From c472e555357d43f719c31966cee79e96abcf68fc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lars=20G=C3=B6ttgens?= Date: Thu, 2 May 2024 17:29:04 +0200 Subject: [PATCH] Fix booktests --- test/book/cornerstones/groups/explSL25.jlcon | 2 +- test/book/cornerstones/groups/intro.jlcon | 6 +++--- test/book/cornerstones/groups/reps.jlcon | 12 ++++++------ .../polynomial-load.jlcon | 2 +- .../draw_hypersurface.jlcon | 2 +- .../eliminate_xz.jlcon | 2 +- 6 files changed, 13 insertions(+), 13 deletions(-) diff --git a/test/book/cornerstones/groups/explSL25.jlcon b/test/book/cornerstones/groups/explSL25.jlcon index bfe5f0582ff9..ed265be8f3b3 100644 --- a/test/book/cornerstones/groups/explSL25.jlcon +++ b/test/book/cornerstones/groups/explSL25.jlcon @@ -30,7 +30,7 @@ julia> schur_index(T[end]) 2 julia> gmodule_minimal_field(S) -G-module for G acting on vector space of dimension 6 over number field of degree 4 over QQ +G-module for G acting on vector space of dimension 6 over number field julia> B, mB = relative_brauer_group(base_ring(S), character_field(S)); diff --git a/test/book/cornerstones/groups/intro.jlcon b/test/book/cornerstones/groups/intro.jlcon index fb7e8a623aaf..8be4e4a235a1 100644 --- a/test/book/cornerstones/groups/intro.jlcon +++ b/test/book/cornerstones/groups/intro.jlcon @@ -63,7 +63,7 @@ julia> pts = collect(orb) julia> visualize(convex_hull(pts)) julia> R2 = free_module(K, 2) # the "euclidean" plane over K -Vector space of dimension 2 over field of algebraic numbers +Vector space of dimension 2 over QQBar julia> A = R2([0,1]) (Root 0 of x, Root 1.00000 of x - 1) @@ -72,8 +72,8 @@ julia> pts = [A*mat_rot^i for i in 0:4]; julia> sigma_1 = hom(R2, R2, [-R2[1], R2[2]]) Module homomorphism - from vector space of dimension 2 over field of algebraic numbers - to vector space of dimension 2 over field of algebraic numbers + from vector space of dimension 2 over QQBar + to vector space of dimension 2 over QQBar julia> rot = hom(R2, R2, mat_rot); diff --git a/test/book/cornerstones/groups/reps.jlcon b/test/book/cornerstones/groups/reps.jlcon index 792bd17669d9..bf8736660733 100644 --- a/test/book/cornerstones/groups/reps.jlcon +++ b/test/book/cornerstones/groups/reps.jlcon @@ -12,9 +12,9 @@ julia> M = regular_gmodule(GF(7), G); julia> C = composition_factors_with_multiplicity(M) 3-element Vector{Any}: - (G-module for G acting on vector space of dimension 1 over prime field of characteristic 7, 1) - (G-module for G acting on vector space of dimension 1 over prime field of characteristic 7, 1) - (G-module for G acting on vector space of dimension 4 over prime field of characteristic 7, 2) + (G-module for G acting on vector space of dimension 1 over GF(7), 1) + (G-module for G acting on vector space of dimension 1 over GF(7), 1) + (G-module for G acting on vector space of dimension 4 over GF(7), 2) julia> [is_absolutely_irreducible(x[1]) for x in C] 3-element Vector{Bool}: @@ -28,12 +28,12 @@ Morphism of finite fields to finite field of degree 2 and characteristic 7 julia> M = extension_of_scalars(C[3][1], phi) -G-module for G acting on vector space of dimension 4 over finite field of degree 2 and characteristic 7 +G-module for G acting on vector space of dimension 4 over GF(7, 2) julia> composition_factors_with_multiplicity(M) 2-element Vector{Any}: - (G-module for G acting on vector space of dimension 2 over finite field of degree 2 and characteristic 7, 1) - (G-module for G acting on vector space of dimension 2 over finite field of degree 2 and characteristic 7, 1) + (G-module for G acting on vector space of dimension 2 over GF(7, 2), 1) + (G-module for G acting on vector space of dimension 2 over GF(7, 2), 1) julia> G = pc_group(symmetric_group(4)); diff --git a/test/book/specialized/joswig-kastner-lorenz-confirmable-workflows/polynomial-load.jlcon b/test/book/specialized/joswig-kastner-lorenz-confirmable-workflows/polynomial-load.jlcon index cfe2de4da68f..001284a2e2d1 100644 --- a/test/book/specialized/joswig-kastner-lorenz-confirmable-workflows/polynomial-load.jlcon +++ b/test/book/specialized/joswig-kastner-lorenz-confirmable-workflows/polynomial-load.jlcon @@ -2,7 +2,7 @@ julia> F, o = finite_field(7,2) (Finite field of degree 2 and characteristic 7, o) julia> R, (y,z) = F["y","z"] -(Multivariate polynomial ring in 2 variables over GF(7, 2), FqMPolyRingElem[y, z]) +(Multivariate polynomial ring in 2 variables over F, FqMPolyRingElem[y, z]) julia> save("p.mrdi", 2*y^3*z^4 + (o + 3)*z^2 + 5*o*y + 1) diff --git a/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/draw_hypersurface.jlcon b/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/draw_hypersurface.jlcon index 4847f599b04a..2bcf95ed6cc7 100644 --- a/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/draw_hypersurface.jlcon +++ b/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/draw_hypersurface.jlcon @@ -2,7 +2,7 @@ julia> Kt,t = rational_function_field(QQ,"t") (Rational function field over QQ, t) julia> Kxy, (x,y) = Kt["x", "y"] -(Multivariate polynomial ring in 2 variables over rational function field, AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.RationalFunctionFieldElem{QQFieldElem, QQPolyRingElem}}[x, y]) +(Multivariate polynomial ring in 2 variables over Kt, AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.RationalFunctionFieldElem{QQFieldElem, QQPolyRingElem}}[x, y]) julia> f=-x^3-4*x^2+y^2+(-8*t^4)*x -x^3 - 4*x^2 - 8*t^4*x + y^2 diff --git a/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/eliminate_xz.jlcon b/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/eliminate_xz.jlcon index b5abf8cf3424..ca90d2698873 100644 --- a/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/eliminate_xz.jlcon +++ b/test/book/specialized/markwig-ristau-schleis-faithful-tropicalization/eliminate_xz.jlcon @@ -2,7 +2,7 @@ julia> S,(b2,b34,b4,b56,b6,b7)=polynomial_ring(QQ,["b2", "b34", "b4", "b56", "b6 (Multivariate polynomial ring in 6 variables over QQ, QQMPolyRingElem[b2, b34, b4, b56, b6, b7]) julia> R,(x, y, z)=polynomial_ring(S,["x", "y", "z"]) -(Multivariate polynomial ring in 3 variables over multivariate polynomial ring, AbstractAlgebra.Generic.MPoly{QQMPolyRingElem}[x, y, z]) +(Multivariate polynomial ring in 3 variables over S, AbstractAlgebra.Generic.MPoly{QQMPolyRingElem}[x, y, z]) julia> g = y^2-x*(x-b2^2)*(x-(b34+b4)^2)*(x-(b4)^2)*(x-(b6+b56)^2)*(x-(b6)^2)*(x+(b7)^2);