-
Notifications
You must be signed in to change notification settings - Fork 497
/
Copy pathtrain.yaml
65 lines (58 loc) · 1.84 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# FFT config for Llama 405B.
#
# Requirements:
# - Log into WandB (`wandb login`) or disable `enable_wandb`
# - Log into HF: `huggingface-cli login`
# - Request access to Llama 3.1: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
#
# Usage:
# oumi train -c configs/recipes/llama3_1/sft/405b_full/train.yaml
#
# See Also:
# - Documentation: https://oumi.ai/docs/en/latest/user_guides/train/train.html
# - Config class: oumi.core.configs.TrainingConfig
# - Config source: https://github.com/oumi-ai/oumi/blob/main/src/oumi/core/configs/training_config.py
# - Other training configs: configs/**/pretraining/, configs/**/sft/, configs/**/dpo/
model:
model_name: "meta-llama/Llama-3.1-405B-Instruct"
model_max_length: 2048
torch_dtype_str: "bfloat16"
attn_implementation: "sdpa"
load_pretrained_weights: True
trust_remote_code: True
tokenizer_pad_token: "<|finetune_right_pad_id|>"
enable_liger_kernel: True
data:
train:
datasets:
- dataset_name: "yahma/alpaca-cleaned" # 51,760 examples
target_col: "prompt"
use_async_dataset: True
training:
trainer_type: "TRL_SFT"
save_steps: 200
num_train_epochs: 1
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
enable_gradient_checkpointing: True
gradient_checkpointing_kwargs:
use_reentrant: False
ddp_find_unused_parameters: False
optimizer: "paged_adamw_8bit"
learning_rate: 2.0e-05
compile: False
dataloader_num_workers: "auto"
dataloader_prefetch_factor: 32
logging_steps: 100
log_model_summary: False
empty_device_cache_steps: 1
output_dir: "output/llama405b.fft"
include_performance_metrics: True
enable_wandb: True
fsdp:
enable_fsdp: True
cpu_offload: True
forward_prefetch: True
state_dict_type: "SHARDED_STATE_DICT"
auto_wrap_policy: "TRANSFORMER_BASED_WRAP"
transformer_layer_cls: "LlamaDecoderLayer"