#!bin/python3 import argparse from ExperimentRunner.ExperimentRunner import * from src.aco_mapf.AcoParameterExperiment import * def optimize(args): outfile = args.optimize datafile = None eval_kwargs = {} if args.data_out: datafile = args.data_out if args.params_out: outfile = args.params_out if args.average: eval_kwargs["avg"] = args.average else: eval_kwargs["avg"] = "mean" if args.property: eval_kwargs["property"] = args.property if args.step: eval_kwargs["step"] = args.step if args.verbose: eval_kwargs["verbose"] = True run_optimization(args.optimize, runs=args.runs, generations=args.generations, outfile=outfile, data_file=datafile, with_cluster=args.parallel, population_size=args.population, eval_kwargs=eval_kwargs, timeout=args.timeout ) def analyze(args): datafile = None if args.data_out: datafile = args.data_out run_experiment(args.analyze, runs=args.runs, data_file=datafile, with_cluster=args.parallel) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--optimize", help='file of parameters to optimize', type=str) parser.add_argument("--data_out", help='file name for data output') parser.add_argument("--params_out", help='file name to write back parameters, default is to write back to the input!') parser.add_argument("--runs", help="number of runs", default=31, type=int) parser.add_argument("--generations", help="number of generations to run", default=20, type=int) parser.add_argument("--population", help="population size", default=10, type=int) parser.add_argument("--parallel", action="store_true", default=True) parser.add_argument("--verbose", action="store_true", default=False) parser.add_argument("--sequential", action="store_false", dest="parallel") parser.add_argument("--step", type=int, help="step number of the fitness evaluation") parser.add_argument("--average", help="used as the averaging method: either mean or median", default="mean") parser.add_argument("--median", help="use median as averaging method in evaluation", action="store_const", const="median", dest="average") parser.add_argument("--property", help="property to use in the evaluation i.e. min_best_distance") parser.add_argument("--timeout", help="timeout in seconds for each generation", type=int, default=600) parser.add_argument("--analyze", help='file of parameters to analyze', type=str) parser.add_argument("--dry", help="only execute the first two tasks, no to see if there are errors", action="store_true", default=False) args = parser.parse_args() if args.optimize: optimize(args) if args.analyze: analyze(args)