-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinput_form_resource_wrapper_no_tunnel.py
518 lines (418 loc) · 20.2 KB
/
input_form_resource_wrapper_no_tunnel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#!/pw/.miniconda3/bin/python
import json
import os
import sys
import logging
import subprocess
from base64 import b64encode
from copy import deepcopy
"""
# Form Resource Wrapper
The code in this workflow is a wrapper to run before any other workflow in order to process and organize
the resource information. The wrapper performs the following actions:
1. Creates a directory for each resource under the job directory.
2. Creates `input.json` and `inputs.sh` files for each resource under the resource's directory. Note
that this is helpful to create code that runs on each of the resources without having to parse the
workflow arguments every time (see link below). For more information see resource inputs section below.
https://github.com/parallelworks/workflow_tutorial/blob/main/011_script_submitter_timeout_failover/main.sh
3. Creates a batch header with the PBS or SLURM directives under the resource's directory. Note that this
header can be used as the header of any script that the workflow submits to the resource.
4. Replaces the values of _replace_with_<parameter-section>.<parameter-name> with the corresponding value
5. Sets the variable submit_cmd to sbatch or qsub if jobscheduler type is SLURM or PBS, respectively. If
qos is present in the inputs dict it sets submit_cmd to sbatch --qos <qos>
6. Some parameters have different items (like default value, help, type) depending on other parameters. For,
example, parameter p1 may have a different default value if the resource is onprem or cloud. The form does
not support this type of logic so instead we define a parameter p1_tag_onprem and p1_tag_cloud. The resource
wrapper removes everything after _tag_ and renames the parameter to p1.
7. Calculates the --ntasks-per-node SLURM parameter required to fit a maximum number of workers per node
specified in the max_workers_per_node input parameter
### Workflow XML
The wrapper only works if the resources are defined using a specific format in the workflow.xml file.
1. Every resource is defined in a separate section.
2. The section name is "pwrl_<resource label>", where the prefix "pwrl_" (PW resource label) is used to
indicate that the section corresponds to a resource definition section.
3. Every section may contain the following special parameters: "jobschedulertype", "scheduler_directives",
"_sch_ parameters" and "nports".
4. jobschedulertype: Select SLURM, PBS or CONTROLLER if the workflow uses this resource to run jobs on a
SLURM partition, a PBS queue or the controller node, respectively.
5. scheduler_directives: Use to type SLURM or PBS scheduler directives for the resource. Use the semicolon
character ";" to separate parameters and do not include the "#SLURM" or "#PBS" keywords. For example,
"--mem=1000;--gpus-per-node=1" or "-l mem=1000;-l nodes=1:ppn=4".
6. _sch_ parameters: These parameters are used to directly expose SLURM and PBS scheduler directives on
the input form in a way that does not require the end user to know the directives or type them using
the "scheduler_directives" parameter. A special format must be used to name these parameters. The
parameter name is directly converted to the corresponding scheduler directive. Therefore, new directives
can be added to the XML without having to modify the workflow code.
### Resource Inputs
The wrapper uses the inputs.sh and inputs.json files to write the resources/<resource-label>/inputs.json and
resources/<resource-label>/inputs.sh files. These files contain the following information:
2. The resource section of the inputs.json is collapsed and any other resource section is removed, see example below.
Original inputs.json:
{
"novnc_dir": "__WORKDIR__/pw/bootstrap/noVNC-1.3.0",
"novnc_tgz": "/swift-pw-bin/apps/noVNC-1.3.0.tgz",
"pwrl_host": {
"resource": {
"id": "6419f5bd7d72b40e5b9a2af7",
"name": "gcpv2",
"status": "on",
"namespace": "alvaro",
"type": "gclusterv2",
"workdir": "/home/alvaro",
"publicIp": "35.222.63.173",
"privateIp": "10.128.0.66",
"username": "alvaro"
},
"nports": "1",
"jobschedulertype": "CONTROLLER"
},
"advanced_options": {
"service_name": "turbovnc",
"stream": true
}
}
resources/host/inputs.json:
{
"resource": {
"id": "6419f5bd7d72b40e5b9a2af7",
"name": "gcpv2",
"status": "on",
"namespace": "alvaro",
"type": "gclusterv2",
"workdir": "/home/alvaro",
"publicIp": "alvaro@35.222.63.173",
"privateIp": "10.128.0.66",
"username": "alvaro",
"ports": [
55238
],
"jobdir": "/home/alvaro/pw/jobs/desktop/00023"
},
"nports": "1",
"jobschedulertype": "CONTROLLER",
"novnc_dir": "/home/alvaro/pw/bootstrap/noVNC-1.3.0",
"novnc_tgz": "/swift-pw-bin/apps/noVNC-1.3.0.tgz",
"advanced_options": {
"service_name": "turbovnc",
"stream": true
}
}
"""
# FIXME: There many ssh connections in this script. Reduce the number of ssh connections
def encode_string_to_base64(text):
# Convert the string to bytes
text_bytes = text.encode('utf-8')
# Encode the bytes to base64
encoded_bytes = b64encode(text_bytes)
# Convert the encoded bytes back to a string
encoded_string = encoded_bytes.decode('utf-8')
return encoded_string
RESOURCES_DIR: str = 'resources'
SUPPORTED_RESOURCE_TYPES: list = ['gclusterv2', 'pclusterv2', 'azclusterv2', 'slurmshv2', 'existing', 'aws-slurm', 'google-slurm', 'azure-slurm']
ONPREM_RESOURCE_TYPES: list = ['slurmshv2', 'existing']
SSH_CMD: str = 'ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null '
def get_logger(log_file, name, level=logging.INFO):
formatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
# Create directory for the log file if it doesn't exist
os.makedirs(os.path.dirname(log_file), exist_ok=True)
# Create a file handler for writing to the log file
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
# Create a stream handler for printing to stdout
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
# Get the logger
logger = logging.getLogger(name)
logger.setLevel(level)
# Add both handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
return logger
os.makedirs(RESOURCES_DIR, exist_ok = True)
log_file = os.path.join(RESOURCES_DIR, os.path.basename(__file__).replace('py', 'log'))
logger = get_logger(log_file, 'resource_wrapper')
def get_command_output(command):
logger.info(f'Running command <{command}>')
try:
result = subprocess.check_output(command, shell=True, universal_newlines=True)
output = result.strip()
return output
except subprocess.CalledProcessError as e:
raise(Exception(f"An error occurred while executing the command: {e}"))
def replace_placeholders(inputs_dict, placeholder_dict):
for ik,iv in inputs_dict.items():
if type(iv) == str:
for pk, pv in placeholder_dict.items():
if pk in iv:
inputs_dict[ik] =iv.replace(pk, pv)
elif type(iv) == dict:
inputs_dict[ik] = replace_placeholders(iv, placeholder_dict)
return inputs_dict
def extract_value_from_dict(string, my_dict):
"""
Extracts a value from a nested dictionary based on a hierarchical key specified in dot notation.
Args:
string (str): A string representing a hierarchical key in dot notation.
my_dict (dict): The dictionary from which to extract the value.
Returns:
The value located at the hierarchical key specified by the input string.
"""
keys = string.split('.')
result = my_dict
for key in keys:
result = result[key]
return result
def replace_assigned_values(inputs_dict, inputs_dict_orig):
keys = list(inputs_dict.keys())
for ik in keys: #,iv in inputs_dict.items():
iv = inputs_dict[ik]
if type(iv) == str:
if iv.startswith('_replace_with_'):
pkey = iv.replace('_replace_with_', '')
inputs_dict[ik] = extract_value_from_dict(pkey, inputs_dict_orig)
elif type(iv) == dict:
inputs_dict[ik] = replace_assigned_values(iv, inputs_dict_orig)
return inputs_dict
def workers_per_node_to_tasks_per_node(max_workers_per_node, cpus_per_node):
truncated = cpus_per_node // max_workers_per_node
remainder = cpus_per_node % max_workers_per_node
if remainder < truncated:
return truncated
else:
return truncated + 1
def complete_resource_information(inputs_dict):
if not inputs_dict['resource']['publicIp']:
if not inputs_dict['resource']['privateIp']:
msg = f'No public or private IP found'
logger.error(msg)
print(f'ERROR: {msg}', flush = True)
raise(Exception(msg))
else:
inputs_dict['resource']['publicIp'] = inputs_dict['resource']['privateIp']
inputs_dict['resource']['publicIp'] = inputs_dict['resource']['username'] + '@' + inputs_dict['resource']['publicIp']
if 'workdir' in inputs_dict:
inputs_dict['resource']['workdir'] = inputs_dict['workdir']
if 'jobschedulertype' not in inputs_dict:
inputs_dict['jobschedulertype'] = 'CONTROLLER'
if inputs_dict['resource']['name'] == 'user_workspace':
inputs_dict['jobschedulertype'] = 'LOCAL'
inputs_dict['resource']['workdir'] = os.path.expanduser("~")
else:
workdir = inputs_dict['resource'].get('workdir')
if not workdir or workdir == '${HOME}':
command_to_get_home_directory = f"{SSH_CMD} {inputs_dict['resource']['publicIp']} pwd"
inputs_dict['resource']['workdir'] = get_command_output(command_to_get_home_directory)
if inputs_dict['jobschedulertype'] == 'SLURM':
if '_sch__dd_partition_e_' in inputs_dict:
partition = inputs_dict['_sch__dd_partition_e_']
command_to_obtain_cpus_per_node=f"{SSH_CMD} {inputs_dict['resource']['publicIp']} sinfo -Nel | awk '/{partition}/ " + "{print $5}' | tail -n1"
cpus_per_node = get_command_output(command_to_obtain_cpus_per_node)
if cpus_per_node:
cpus_per_node = int(cpus_per_node)
inputs_dict['cpus_per_node'] = cpus_per_node
if 'cpus_per_node' in inputs_dict and 'max_workers_per_node' in inputs_dict:
max_workers_per_node = int(inputs_dict['max_workers_per_node'])
inputs_dict['_sch__dd_ntasks_d_per_d_node_e_'] = workers_per_node_to_tasks_per_node(max_workers_per_node, cpus_per_node)
inputs_dict['submit_cmd'] = "sbatch"
if 'qos' in inputs_dict:
inputs_dict['submit_cmd'] = inputs_dict['submit_cmd'] + ' --qos ' + inputs_dict['qos']
inputs_dict['cancel_cmd'] = "scancel"
inputs_dict['status_cmd'] = "squeue"
elif inputs_dict['jobschedulertype'] == 'PBS':
inputs_dict['submit_cmd'] = "qsub"
inputs_dict['cancel_cmd'] = "qdel"
inputs_dict['status_cmd'] = "qstat"
inputs_dict['resource']['jobdir'] = os.path.join(
inputs_dict['resource']['workdir'],
'pw/jobs',
inputs_dict['workflow_name'],
inputs_dict['job_number']
)
inputs_dict = replace_placeholders(
inputs_dict,
{
'__workdir__': inputs_dict['resource']['workdir'],
'__WORKDIR__': inputs_dict['resource']['workdir'],
'__user__': inputs_dict['resource']['username'],
'__USER__': inputs_dict['resource']['username'],
'__user__': os.environ['PW_USER'],
'__USER__': os.environ['PW_USER'],
'__pw_user__': os.environ['PW_USER'],
'__PW_USER__': os.environ['PW_USER']
}
)
inputs_dict = replace_assigned_values(inputs_dict, inputs_dict)
return inputs_dict
def flatten_dictionary(dictionary, parent_key='', separator='_'):
flattened_dict = {}
for key, value in dictionary.items():
new_key = f"{parent_key}{separator}{key}" if parent_key else key
if isinstance(value, dict):
flattened_dict.update(flatten_dictionary(value, new_key, separator))
if isinstance(value, list):
flattened_dict[new_key] = '___'.join([str(i) for i in value])
else:
flattened_dict[new_key] = value
return flattened_dict
def get_scheduler_directives_from_input_form(inputs_dict):
"""
The parameter names are converted to scheduler directives
# Character mapping for special scheduler parameters:
# 1. _sch_ --> ''
# 1. _d_ --> '-'
# 2. _dd_ --> '--'
# 2. _e_ --> '='
# 3. ___ --> ' ' (Not in this function)
# Get special scheduler parameters
"""
scheduler_directives = []
for k,v in inputs_dict.items():
if k.startswith('_sch_'):
schd = k.replace('_sch_', '')
schd = schd.replace('_d_', '-')
schd = schd.replace('_dd_', '--')
schd = schd.replace('_e_', '=')
schd = schd.replace('___', ' ')
if v:
scheduler_directives.append(schd+str(v))
return scheduler_directives
def create_batch_header(inputs_dict, header_sh):
scheduler_directives = []
if 'scheduler_directives' in inputs_dict:
scheduler_directives = inputs_dict['scheduler_directives'].split(';')
elif inputs_dict['jobschedulertype'] == 'SLURM':
if 'scheduler_directives_slurm' in inputs_dict:
scheduler_directives = inputs_dict['scheduler_directives_slurm'].split(';')
elif inputs_dict['jobschedulertype'] == 'PBS':
if 'scheduler_directives_pbs' in inputs_dict:
scheduler_directives = inputs_dict['scheduler_directives_pbs'].split(';')
if scheduler_directives:
scheduler_directives = [schd.lstrip() for schd in scheduler_directives]
scheduler_directives += get_scheduler_directives_from_input_form(inputs_dict)
jobdir = inputs_dict['resource']['jobdir']
scheduler_directives += [f'-o {jobdir}/logs.out', f'-e {jobdir}/logs.out']
jobschedulertype = inputs_dict['jobschedulertype']
if jobschedulertype == 'SLURM':
directive_prefix="#SBATCH"
scheduler_directives += ["--job-name={}".format(inputs_dict['job_name']), f"--chdir={jobdir}"]
elif jobschedulertype == 'PBS':
directive_prefix="#PBS"
scheduler_directives += ["-N {}".format(inputs_dict['job_name'])]
else:
return
if 'shebang' in inputs_dict:
shebang = inputs_dict['shebang']
else:
shebang = '#!/bin/bash'
with open(header_sh, 'w') as f:
f.write(shebang + '\n')
for schd in scheduler_directives:
if schd:
schd.replace('___',' ')
f.write(f'{directive_prefix} {schd}\n')
def convert_bool_to_string(bool_var):
if bool_var:
return "true"
return "false"
def create_resource_directory(resource_inputs, resource_label):
dir = os.path.join(RESOURCES_DIR, resource_label)
inputs_json = os.path.join(dir, 'inputs.json')
inputs_sh = os.path.join(dir, 'inputs.sh')
header_sh = os.path.join(dir, 'batch_header.sh')
resource_inputs_flatten = flatten_dictionary(resource_inputs)
# Remove dictionaries
resource_inputs_flatten = {key: value for key, value in resource_inputs_flatten.items() if not isinstance(value, dict)}
os.makedirs(dir, exist_ok=True)
with open(inputs_json, 'w') as f:
json.dump(resource_inputs, f, indent = 4)
with open(inputs_sh, 'w') as f:
for k,v in resource_inputs_flatten.items():
if type(v) == bool:
v = convert_bool_to_string(v)
if type(v) == str:
v = v.replace('"', '\\"')
f.write(f"export {k}=\"{v}\"\n")
create_batch_header(resource_inputs, header_sh)
def extract_resource_inputs(inputs_dict, resource_label):
"""
Extracts inputs from a dictionary, including the resource-specific data identified
by the provided resource label, along with any general inputs not associated with a resource label.
Parameters:
inputs_dict (dict): The dictionary with the contents of /pw/jobs/<workflow-name>/inputs.json
label (str): The resource label identifying the resource-specific data to be extracted.
Returns:
dict: A dictionary containing both the resource data corresponding to the provided label
and any general inputs not associated with a specific resource.
"""
resource_inputs = inputs_dict[f'pwrl_{resource_label}']
# Copy every other input with no resource label
for key, value in inputs_dict.items():
if not key.startswith('pwrl_'):
resource_inputs[key] = value
return resource_inputs
def check_slurm(public_ip):
# Fail if slurmctld is not running
command = f'{SSH_CMD} {public_ip} ps aux | grep slurmctld | grep -v grep || echo'
is_slurmctld = get_command_output(command)
if not is_slurmctld:
msg = f'slurmctld is not running in resource {public_ip}'
logger.error(msg)
print(f'ERROR: {msg}', flush = True)
raise(Exception(msg))
def create_remote_job_directory(ip, jobdir):
mkdir_cmd =f"{SSH_CMD} {ip} mkdir -p {jobdir}"
get_command_output(mkdir_cmd)
def prepare_resource(inputs_dict, resource_label):
resource_inputs = extract_resource_inputs(inputs_dict, resource_label)
resource_inputs = complete_resource_information(resource_inputs)
resource_inputs['resource']['label'] = resource_label
if resource_inputs['jobschedulertype'] == 'SLURM' and resource_inputs['resource']['type'] not in ONPREM_RESOURCE_TYPES:
check_slurm(resource_inputs['resource']['publicIp'])
logger.info(json.dumps(resource_inputs, indent = 4))
create_resource_directory(resource_inputs, resource_label)
create_remote_job_directory(resource_inputs['resource']['publicIp'], resource_inputs['resource']['jobdir'])
def clean_inputs(inputs_dict):
"""
Some parameters have different items (like default value, help, type) depending on other parameters. For,
example, parameter p1 may have a different default value if the resource is onprem or cloud. The form does
not support this type of logic so instead we define a parameter p1_tag_onprem and p1_tag_cloud. The resource
wrapper removes everything after _tag_ and renames the parameter to p1.
"""
new_inputs_dict = deepcopy(inputs_dict)
for ik,iv in inputs_dict.items():
if '_tag_' in ik:
del new_inputs_dict[ik]
new_ik = ik.split('_tag_')[0]
else:
new_ik = ik
if type(iv) == dict:
new_inputs_dict[new_ik] = clean_inputs(iv)
elif iv:
new_inputs_dict[new_ik] = iv
return new_inputs_dict
if __name__ == '__main__':
with open('inputs.json') as inputs_json:
inputs_dict = json.load(inputs_json)
# FIXME: Remove this code when issue https://github.com/parallelworks/core/issues/5826 is resolved!
if len(sys.argv) == 2:
public_ip = sys.argv[1]
inputs_dict['pwrl_host']['resource']['publicIp'] = public_ip
################################################################################
inputs_dict = clean_inputs(inputs_dict)
# Add basic job info to inputs_dict:
inputs_dict['job_number'] = os.path.basename(os.getcwd())
inputs_dict['job_number_int'] = int(inputs_dict['job_number'])
inputs_dict['workflow_name'] = os.path.basename(os.path.dirname(os.getcwd()))
inputs_dict['job_name'] = "{}-{}".format(inputs_dict['workflow_name'], inputs_dict['job_number'])
inputs_dict['pw_job_dir'] = os.getcwd()
inputs_dict['pw_user'] = os.environ.get('PW_USER')
inputs_dict['pw_platform_host'] = os.environ.get('PW_PLATFORM_HOST')
# Find all resource labels
resource_labels = [label.replace('pwrl_','') for label in inputs_dict.keys() if label.startswith('pwrl_')]
if not resource_labels:
logger.info('No resource labels found. Exiting wrapper.')
exit()
logger.info('Resource labels: [{}]'.format(', '.join(resource_labels)))
for label in resource_labels:
logger.info(f'Preparing resource <{label}>')
prepare_resource(inputs_dict, label)