-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcars.py
44 lines (32 loc) · 1015 Bytes
/
cars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#car detection movie based
import cv2
import sys
face_cascade = cv2.CascadeClassifier('data/haarcascade_car.xml')
video_capture = cv2.VideoCapture("cars.mp4")
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
autos = face_cascade.detectMultiScale(gray,
scaleFactor = 1.1,
minNeighbors = 8,
minSize = (20,20),
maxSize = (200,200)
)
# minNeighbors, for gouped boxes and detect object
# minSize, min size of the box for detect object
# maxSize, max of the box to detect object
#
# Draw a rectangle around the faces
for (x, y, w, h) in autos:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#key = cv2.waitKey(0)
#if key == 27:
# break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()