-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacerecogclass.py
60 lines (48 loc) · 1.82 KB
/
facerecogclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import mediapipe as mp
import imutils
class handDetector():
def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.detectionCon, self.trackCon)
self.mpDraw = mp.solutions.drawing_utils
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.response = self.hands.process(imgRGB)
if self.response.multi_hand_landmarks:
for handland in self.response.multi_hand_landmarks: # para cada mano
if draw:
self.mpDraw.draw_landmarks(img, handland, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True):
lmlist = []
if self.response.multi_hand_landmarks:
mihand = self.response.multi_hand_landmarks[handNo]
for id, lm in enumerate(mihand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x*w), int(lm.y*h )
lmlist.append([id, cx, cy])
# if draw:
# cv2.circle(img, (cx, cy),5, (255,0,255), cv2.FILLED)
return lmlist
def main():
cap = cv2.VideoCapture(3)
detector = handDetector()
while True:
res, img = cap.read()
img = imutils.resize(img, width=720)
img = detector.findHands(img)
lmlist = detector.findPosition(img)
if len(lmlist) != 0:
print(lmlist[4])
cv2.imshow("hands", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()