-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimages.py
executable file
·71 lines (47 loc) · 1.91 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import cv2
confidenceThreshold = 0.5
NMSThreshold = 0.3
modelConfiguration = 'cfg/yolov3.cfg'
modelWeights = 'yolov3.weights'
labelsPath = 'classes.names'
labels = open(labelsPath).read().strip().split('\n')
np.random.seed(10)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
image = cv2.imread('img/1.jpg')
(H, W) = image.shape[:2]
#Determine output layer names
layerName = net.getLayerNames()
layerName = [layerName[i[0] - 1] for i in net.getUnconnectedOutLayers()]
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB = True, crop = False)
net.setInput(blob)
layersOutputs = net.forward(layerName)
boxes = []
confidences = []
classIDs = []
for output in layersOutputs:
for detection in output:
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
if confidence > confidenceThreshold:
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype('int')
x = int(centerX - (width/2))
y = int(centerY - (height/2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
#Apply Non Maxima Suppression
detectionNMS = cv2.dnn.NMSBoxes(boxes, confidences, confidenceThreshold, NMSThreshold)
if(len(detectionNMS) > 0):
for i in detectionNMS.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
#color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), 3, 2)
text = 'firearm'
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 3, 2)
cv2.imshow('Image', image)
cv2.waitKey(0)