-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcomplexitymeasures.py
505 lines (430 loc) · 15.2 KB
/
complexitymeasures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import numpy as np
import tensorflow as tf
from tensorflow import keras
from collections import defaultdict
import json
import pickle
import os
import time
import sys
import random
from tensorflow.keras.models import load_model
from scipy.stats import *
sys.path.append('..')
from sklearn.preprocessing import StandardScaler, Normalizer, LabelEncoder
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, davies_bouldin_score, pairwise_distances, calinski_harabasz_score
from sklearn.utils import check_X_y, _safe_indexing
from scipy.stats import wasserstein_distance, moment
from math import log, exp
import matplotlib.pyplot as plt
from augment import *
from computecomplexityfinal import *
import copy
import math
def complexityMargin(model, dataset, augment='standard', program_dir=None):
'''
Fuction to calculate margin summary measure on augmented data
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
augment : str, optional
The type of augmentation to use ('standard', 'mixup', 'adverserial', 'adverserial+standard', 'mixup+standard')
program_dir : str, optional
The program directory to store and retrieve additional data
Returns
-------
float
complexity measure
'''
keras.backend.clear_session()
np.random.seed(0)
marginDistribution = {}
C = CustomComplexityFinal(model, dataset, augment=augment, input_margin=False)
for label in range(2, 3):
marginDistribution[label], normwidth = C.computeMargins(top = label)
score = 0
def computeQuantiles(d):
q1 = np.percentile(d, 25)
q2 = np.percentile(d, 50)
q3 = np.percentile(d, 75)
iqr = q3 - q1
if d[d < q1 - 1.5*iqr].size == 0:
f_l = np.min(d)
else:
f_l = np.max(d[d < q1 - 1.5*iqr])
if d[d > q3 + 1.5*iqr].size == 0:
f_u = np.max(d)
else:
f_u = np.min(d[d > q3 + 1.5*iqr])
ret = [f_l, q1, q2, q3, f_u]
return np.array(ret)
def computePercentiles(d):
return np.array([np.percentile(d, p) for p in list(range(5, 95, 10))])
def computeMoments(d):
moments = [stats.moment(d, moment=ord)**(1/ord) for ord in range(1, 6)]
moments[0] = np.mean(d)
moments = np.nan_to_num(moments, nan=np.mean(moments))
print(moments)
return np.array(moments)
for label in range(2, 3):
for i, index in enumerate(list(marginDistribution[label].keys())):
quantiles = np.mean(computeQuantiles(marginDistribution[label][index]))
mean = np.nanmean(marginDistribution[label][index])
score += mean/len(list(marginDistribution[label].keys()))
return -score
def complexityNorm(model, dataset, program_dir=None):
'''
Function to calculate norm based complexity measures
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
program_dir : str, optional
The program directory to store and retrieve additional data
Returns
-------
float
complexity measure
'''
C = CustomComplexity(model, dataset, metric='batch_variance', augment='standard')
Norm = C.getNormComplexity(norm='fro')
score = 0
score += Norm
params = np.sum([tf.keras.backend.count_params(p) for p in model.trainable_weights])
print('Params:', params, model.layers[0].get_weights()[0].shape[-1])
print('Final Score:', score, len(model.layers))
return score
def complexityDB(model, dataset, program_dir=None, pool=True, use_pca = False, layer='initial', computeOver=400, batchSize=40):
'''
Function to calculate feature clustering based measures. Based on the sklearn implementation of DB Index.
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
program_dir : str, optional
The program directory to store and retrieve additional data
pool : bool, optional
Whether to use max-pooling for dimensionality reduction, default True
use_pca : bool, optional
Whether to use PCA for dimensionality reduction, default False
layer : str or int, optional
Which layer to compute DB on. Either 'initial', for the first conv/pooling layer in the
model, 'pre-penultimate' for the 3rd-from-last conv/pool layer, or an int indicating the
layer. Defaults to 'initial'.
Returns
-------
float
complexity measure
'''
def check_number_of_labels(n_labels, n_samples):
"""Check that number of labels are valid.
Parameters
----------
n_labels : int
Number of labels
n_samples : int
Number of samples
"""
if not 1 < n_labels < n_samples:
raise ValueError("Number of labels is %d. Valid values are 2 "
"to n_samples - 1 (inclusive)" % n_labels)
def db(X, labels):
X, labels = check_X_y(X, labels)
le = LabelEncoder()
labels = le.fit_transform(labels)
n_samples, _ = X.shape
n_labels = len(le.classes_)
check_number_of_labels(n_labels, n_samples)
intra_dists = np.zeros(n_labels)
centroids = np.zeros((n_labels, len(X[0])), dtype=float)
for k in range(n_labels):
cluster_k = _safe_indexing(X, labels == k)
centroid = cluster_k.mean(axis=0)
centroids[k] = centroid
intra_dists[k] = np.average(pairwise_distances(
cluster_k, [centroid], metric='euclidean'))
centroid_distances = pairwise_distances(centroids, metric='euclidean')
if np.allclose(intra_dists, 0) or np.allclose(centroid_distances, 0):
return 0.0
centroid_distances[centroid_distances == 0] = np.inf
combined_intra_dists = intra_dists[:, None] + intra_dists
scores = np.max(combined_intra_dists / centroid_distances, axis=1)
return np.mean(scores)
tf.keras.backend.clear_session()
db_score = {}
C = CustomComplexityFinal(model, dataset, augment='mixup', computeOver=computeOver, batchSize=batchSize)
it = iter(dataset.repeat(-1).batch(C.batchSize))
batch=next(it)
extractor = C.intermediateOutputs(batch=batch)
if pool == True:
max_pool = tf.keras.layers.MaxPooling2D(pool_size=(4, 4), strides=None, padding="valid", data_format=None)
else:
max_pool = tf.keras.layers.Lambda(lambda x: x + 0)
layers = []
layer_dict = {'initial': [0, 1, 2], 'pre-penultimate': [-3, -4, -5]}
if isinstance(layer, str):
for l in layer_dict[layer]:
c = list(model.get_layer(index = l).get_config().keys())
if 'strides' in c:
layers.append(l)
if len(layers) == 1:
break
else:
for l in [layer]:
c = list(model.get_layer(index = l).get_config().keys())
if 'strides' in c:
layers.append(l)
if len(layers) == 1:
break
D = DataAugmentor(batchSize = C.batchSize)
for l in layers:
it = iter(dataset.repeat(-1).shuffle(5000, seed=1).batch(C.batchSize))
for i in range(C.computeOver//C.batchSize):
tf.keras.backend.clear_session()
batch1 = next(it)
# batch1 = (D.augment(batch1[0]), batch1[1])
batch2 = next(it)
# batch2 = (D.augment(batch2[0]), batch2[1])
batch3 = next(it)
# batch3 = (D.augment(batch3[0]), batch3[1])
feature = np.concatenate((max_pool(extractor(batch1[0].numpy())[l]).numpy().reshape(batch1[0].shape[0], -1),
max_pool(extractor(batch2[0].numpy())[l]).numpy().reshape(batch2[0].shape[0], -1),
max_pool(extractor(batch3[0].numpy())[l]).numpy().reshape(batch3[0].shape[0], -1)), axis = 0)
target = np.concatenate((batch1[1], batch2[1], batch3[1]), axis = 0)
if use_pca == True:
pca = PCA(n_components=25)
feature = pca.fit_transform(feature)
try:
db_score[l] += db(feature, target)/(C.computeOver//C.batchSize)
except Exception as e:
db_score[l] = db(feature, target)/(C.computeOver//C.batchSize)
score = np.mean(list(db_score.values()))
return(score)
def complexityMixup(model, dataset, program_dir=None,
computeOver=500, batchSize=50):
'''
Function to calculate label-wise Mixup based measure
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
program_dir : str, optional
The program directory to store and retrieve additional data
computeOver : int
The number of samples over which to compute the complexity measure
batchSize:
The batch size
Returns
-------
float
complexity measure
'''
it = iter(dataset.repeat(-1).shuffle(5000, seed=1).batch(batchSize))
batch = next(it)
n_classes = 1+np.max(batch[1].numpy())
batchSize = n_classes*10
computeOver = batchSize*10
tf.keras.backend.clear_session()
it = iter(dataset.repeat(-1).batch(batchSize))
N = computeOver//batchSize
batches = [next(it) for i in range(N)]
vr = []
def intrapolateImages(img, alpha=0.5):
temp = np.stack([img]*img.shape[0])
tempT = np.transpose(temp, axes = (1,0,2,3,4))
ret = alpha*temp + (1-alpha)*tempT
mask = np.triu_indices(img.shape[0], 1)
return ret[mask]
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in range(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return
def veracityRatio(model, batches, label, version_loss=None, label_smoothing=0.1):
ret = []
lossObject = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True)
for b in batches:
img = b[0][b[1]==label]
lbl = b[1][b[1]==label]
int_img = intrapolateImages(img)
int_lbl = np.stack([label]*int_img.shape[0])
int_logits = model(int_img)
if version_loss == 'log':
logLikelihood = lossObject(int_lbl, int_logits)
ret.append(logLikelihood)
elif version_loss == 'cosine':
int_preds = tf.nn.softmax(int_logits, axis = 1)
target = tf.one_hot(int_lbl, int_preds.shape[-1]) * (1 - label_smoothing) + label_smoothing/2
ret.append((tf.keras.losses.CosineSimilarity()(target, int_preds)+1)/2)
elif version_loss == 'mse':
int_preds = tf.nn.softmax(int_logits, axis = 1)
target = tf.one_hot(int_lbl, int_preds.shape[-1]) #* (1 - label_smoothing) + label_smoothing/2
ret.append(tf.keras.losses.MeanSquaredError()(target, int_preds))
else:
int_preds = tf.argmax(int_logits, axis=1)
ret.append(np.sum(int_preds==label)/np.size(int_preds))
return np.mean(ret)
for l in range(n_classes):
try:
vr.append(veracityRatio(model, batches, l))
except:
pass
return np.mean(vr)
def complexityManifoldMixup(model, dataset, program_dir=None,
computeOver=1000, batchSize=50):
'''
Function to calculate Manifold Mixup based measure
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
program_dir : str, optional
The program directory to store and retrieve additional data
computeOver : int
The number of samples over which to compute the complexity measure
batchSize: int
The batch size
Returns
-------
float
complexity measure
'''
it = iter(dataset.repeat(-1).batch(batchSize))
N = computeOver//batchSize
batches = [next(it) for i in range(N)]
digress = []
def intrapolateImages(img, alpha=0.5):
temp = np.stack([img]*img.shape[0])
tempT = np.transpose(temp, axes = (1,0,2,3,4))
ret = alpha*temp + (1-alpha)*tempT
mask = np.triu_indices(img.shape[0], 1)
return ret[mask]
def multiplicativeNoise(img, std=2):
return img*(tf.random.normal(mean=1., stddev=std, shape=img.shape, seed=1))
def veracityRatio(model, batches, label, layer=0, version_loss=False):
cloned_model = keras.models.clone_model(model, input_tensors=keras.Input(shape=(batches[0][0][0].shape)))
cloned_model.set_weights(model.get_weights())
if layer != 0:
cloned_model.layers[layer-1].activation = keras.activations.linear
for b in batches:
ret = []
img = b[0][b[1]==label]
orig_logits = cloned_model(img)
representation = cloned_model.layers[layer]._last_seen_input
int_repr = intrapolateImages(representation)
int_lbl = np.stack([label]*int_repr.shape[0])
x = int_repr
for i in range(layer, len(model.layers)):
if i == layer and i != 0:
x = keras.activations.relu(x)
x = model.layers[i](x)
else:
x = model.layers[i](x)
if version_loss:
logLikelihood = lossObject(int_lbl, x)
ret.append(logLikelihood/np.size(int_preds))
else:
int_preds = tf.argmax(x, axis=1)
ret.append(np.sum(int_preds==label)/np.size(int_preds))
return np.mean(ret)
for l in range(10):
try:
digress.append(veracityRatio(model, batches, l, layer = 1))
except:
pass
return np.mean(digress)
def complexityMixupSoft(model, dataset, program_dir=None,
computeOver=1000, batchSize=100):
'''
Function to calculate Mixup based measure
Parameters
----------
model : tf.keras.Model()
The Keras model for which the complexity measure is to be computed
dataset : tf.data.Dataset
Dataset object from PGDL data loader
program_dir : str, optional
The program directory to store and retrieve additional data
computeOver : int
The number of samples over which to compute the complexity measure
batchSize: int
The batch size
Returns
-------
float
complexity measure
'''
it = iter(dataset.repeat(-1).shuffle(5000, seed=1).batch(batchSize))
batch = next(it)
n_classes = 1+np.max(batch[1].numpy())
batchSize = n_classes*10
computeOver = batchSize*10
tf.keras.backend.clear_session()
it = iter(dataset.repeat(-1).batch(batchSize))
N = computeOver//batchSize
batches = [next(it) for i in range(N)]
np.random.seed(0)
vr = []
def intrapolateImages(img, lbl, alpha=0.5):
indices = np.random.randint(0, img.shape[0], size = img.shape[0])
img = img*alpha + img[indices]*(1-alpha)
lbl = lbl*alpha + lbl[indices]*(1-alpha)
return (tf.convert_to_tensor(img), tf.convert_to_tensor(lbl))
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in range(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return
def veracityRatio(model, batches, version_loss=None, label_smoothing=0.1):
ret = []
lossObject = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True)
for b in batches:
int_img, int_lbl = intrapolateImages(b[0].numpy(), b[1].numpy())
int_logits = model(int_img)
if version_loss == 'log':
logLikelihood = lossObject(int_lbl, int_logits)
ret.append(logLikelihood)
elif version_loss == 'cosine':
int_preds = tf.nn.softmax(int_logits, axis = 1)
target = tf.one_hot(int_lbl, int_preds.shape[-1]) * (1 - label_smoothing) + label_smoothing/2
ret.append((tf.keras.losses.CosineSimilarity()(target, int_preds)+1)/2)
elif version_loss == 'mse':
int_preds = tf.nn.softmax(int_logits, axis = 1)
target = tf.one_hot(int_lbl, int_preds.shape[-1]) #* (1 - label_smoothing) + label_smoothing/2
ret.append(tf.keras.losses.MeanSquaredError()(target, int_preds))
else:
int_preds = tf.argmax(int_logits, axis=1)
ret.append(np.sum(int_preds==label)/np.size(int_preds))
return np.mean(ret)
vr.append(veracityRatio(model, batches, version_loss='log'))
return np.mean(vr)