-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_model.py
518 lines (388 loc) · 16.6 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
"""Model adapter registration."""
"""This code is sourced from 4960ca7 commit of https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_adapter.py"""
import math
import sys
from typing import List, Optional
import warnings
if sys.version_info >= (3, 9):
from functools import cache
else:
from functools import lru_cache as cache
import psutil
import torch
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
LlamaTokenizer,
LlamaForCausalLM,
T5Tokenizer,
)
from conversation import Conversation, get_conv_template
class BaseModelAdapter:
"""The base and the default model adapter."""
use_fast_tokenizer = True
def match(self, model_path: str):
return True
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
revision = from_pretrained_kwargs.get("revision", "main")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_path,
use_fast=self.use_fast_tokenizer,
revision=revision,
)
except TypeError:
tokenizer = AutoTokenizer.from_pretrained(
model_path,
use_fast=False,
revision=revision,
)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
def load_compress_model(self, model_path, device, torch_dtype, revision="main"):
return load_compress_model(
model_path,
device,
torch_dtype,
use_fast=self.use_fast_tokenizer,
revision=revision,
)
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("one_shot")
# A global registry for all model adapters
# TODO (lmzheng): make it a priority queue.
model_adapters: List[BaseModelAdapter] = []
class BaseAdapter:
"""The base and the default model adapter."""
def match(self, model_path: str):
return True
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("one_shot")
# A global registry for all model adapters
model_adapters: List[BaseAdapter] = []
def register_model_adapter(cls):
"""Register a model adapter."""
model_adapters.append(cls())
@cache
def get_model_adapter(model_path: str) -> BaseAdapter:
"""Get a model adapter for a model_path."""
for adapter in model_adapters:
if adapter.match(model_path):
return adapter
raise ValueError(f"No valid model adapter for {model_path}")
def get_conversation_template(model_path: str) -> Conversation:
adapter = get_model_adapter(model_path)
return adapter.get_default_conv_template(model_path)
def add_model_args(parser):
parser.add_argument(
"--model-path",
type=str,
default="lmsys/fastchat-t5-3b-v1.0",
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda", "mps"],
default="cuda",
help="The device type",
)
parser.add_argument(
"--gpus",
type=str,
default=None,
help="A single GPU like 1 or multiple GPUs like 0,2",
)
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
"--max-gpu-memory",
type=str,
help="The maximum memory per gpu. Use a string like '13Gib'",
)
parser.add_argument(
"--load-8bit", action="store_true", help="Use 8-bit quantization"
)
parser.add_argument(
"--cpu-offloading",
action="store_true",
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
)
def remove_parent_directory_name(model_path):
"""Remove parent directory name."""
if model_path[-1] == "/":
model_path = model_path[:-1]
return model_path.split("/")[-1]
class VicunaAdapter(BaseAdapter):
"Model adapater for vicuna-v1.1"
def match(self, model_path: str):
return "vicuna" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
self.raise_warning_for_old_weights(model)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
if "v0" in remove_parent_directory_name(model_path):
return get_conv_template("one_shot")
return get_conv_template("vicuna_v1.1")
def raise_warning_for_old_weights(self, model):
if isinstance(model, LlamaForCausalLM) and model.model.vocab_size > 32000:
warnings.warn(
"\nYou are probably using the old Vicuna-v0 model, "
"which will generate unexpected results with the "
"current fastchat.\nYou can try one of the following methods:\n"
"1. Upgrade your weights to the new Vicuna-v1.1: https://github.com/lm-sys/FastChat#vicuna-weights.\n"
"2. Use the old conversation template by `python3 -m fastchat.serve.cli --model-path /path/to/vicuna-v0 --conv-template conv_one_shot`\n"
"3. Downgrade fschat to fschat==0.1.10 (Not recommonded).\n"
)
class T5Adapter(BaseAdapter):
"""The model adapter for lmsys/fastchat-t5-3b-v1.0"""
def match(self, model_path: str):
return "t5" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = T5Tokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
class KoalaAdapter(BaseAdapter):
"""The model adapter for koala"""
def match(self, model_path: str):
return "koala" in model_path
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("koala_v1")
class AlpacaAdapter(BaseAdapter):
"""The model adapter for alpaca."""
def match(self, model_path: str):
return "alpaca" in model_path.lower()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("alpaca")
class ChatGLMAdapter(BaseAdapter):
"""The model adapter for THUDM/chatglm-6b"""
def match(self, model_path: str):
return "chatglm" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(
model_path, trust_remote_code=True, **from_pretrained_kwargs
)
return model, tokenizer
class DollyV2Adapter(BaseAdapter):
"""The model adapter for databricks/dolly-v2-12b"""
def match(self, model_path: str):
return "dolly-v2" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
# 50277 means "### End"
tokenizer.eos_token_id = 50277
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("dolly_v2")
class OasstPythiaAdapter(BaseAdapter):
"""The model adapter for OpenAssistant/oasst-sft-1-pythia-12b"""
def match(self, model_path: str):
return "oasst" in model_path and "pythia" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("oasst_pythia")
class StableLMAdapter(BaseAdapter):
"""The model adapter for StabilityAI/stablelm-tuned-alpha-7b"""
def match(self, model_path: str):
return "stablelm" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("stablelm")
class MPTAdapter(BaseAdapter):
"""The model adapter for mosaicml/mpt-7b-chat"""
def match(self, model_path: str):
return "mpt" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
trust_remote_code=True,
max_seq_len=8192,
**from_pretrained_kwargs,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=True
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("mpt")
class BaizeAdapter(BaseAdapter):
"""The model adapter for project-baize/baize-lora-7B"""
def match(self, model_path: str):
return "baize" in model_path
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("baize")
class RwkvAdapter(BaseAdapter):
"""The model adapter for BlinkDL/RWKV-4-Raven"""
def match(self, model_path: str):
return "RWKV-4" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
from fastchat.model.rwkv_model import RwkvModel
model = RwkvModel(model_path)
tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/pythia-160m", use_fast=True
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("rwkv")
class OpenBuddyAdapter(BaseAdapter):
"""The model adapter for OpenBuddy/openbuddy-7b-v1.1-bf16-enc"""
def match(self, model_path: str):
return "openbuddy" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
if "-bf16" in model_path:
from_pretrained_kwargs["torch_dtype"] = torch.bfloat16
warnings.warn(
"## This is a bf16(bfloat16) variant of OpenBuddy. Please make sure your GPU supports bf16."
)
model = LlamaForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
tokenizer = LlamaTokenizer.from_pretrained(model_path)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("openbuddy")
class PhoenixAdapter(BaseAdapter):
"""The model adapter for FreedomIntelligence/phoenix-inst-chat-7b"""
def match(self, model_path: str):
return "phoenix" in model_path
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("phoenix")
class Llama2Adapter(BaseModelAdapter):
"""The model adapter for llama-2"""
def match(self, model_path: str):
return "llama-2" in model_path.lower()
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
model, tokenizer = super().load_model(model_path, from_pretrained_kwargs)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("llama-2")
class ChatGPTAdapter(BaseAdapter):
"""The model adapter for ChatGPT."""
def match(self, model_path: str):
return model_path == "gpt-3.5-turbo" or model_path == "gpt-4"
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
raise NotImplementedError()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("chatgpt")
class ClaudeAdapter(BaseAdapter):
"""The model adapter for Claude."""
def match(self, model_path: str):
return model_path in ["claude-v1", "claude-instant-v1"]
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
raise NotImplementedError()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("claude")
class BardAdapter(BaseAdapter):
"""The model adapter for Bard."""
def match(self, model_path: str):
return model_path == "bard"
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
raise NotImplementedError()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("bard")
class BiLLaAdapter(BaseAdapter):
"""The model adapter for BiLLa."""
def match(self, model_path: str):
return "billa" in model_path.lower()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("billa")
class RedPajamaINCITEAdapter(BaseAdapter):
"""The model adapter for RedPajama INCITE."""
def match(self, model_path: str):
return "redpajama-incite" in model_path.lower()
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path) # no use_fast=False
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("redpajama-incite")
class H2OGPTAdapter(BaseAdapter):
"""The model adapter for h2oGPT."""
def match(self, model_path: str):
return "h2ogpt" in model_path.lower()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("h2ogpt")
class SelFeeAdapter(BaseAdapter):
"""The model adapter for SelFee."""
def match(self, model_path: str):
return "selfee" in model_path.lower()
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("selfee")
# Note: the registration order matters.
# The one registered earlier has a higher matching priority.
register_model_adapter(VicunaAdapter)
register_model_adapter(T5Adapter)
register_model_adapter(KoalaAdapter)
register_model_adapter(AlpacaAdapter)
register_model_adapter(ChatGLMAdapter)
register_model_adapter(DollyV2Adapter)
register_model_adapter(OasstPythiaAdapter)
register_model_adapter(StableLMAdapter)
register_model_adapter(BaizeAdapter)
register_model_adapter(RwkvAdapter)
register_model_adapter(OpenBuddyAdapter)
register_model_adapter(PhoenixAdapter)
register_model_adapter(BardAdapter)
register_model_adapter(ChatGPTAdapter)
register_model_adapter(ClaudeAdapter)
register_model_adapter(MPTAdapter)
register_model_adapter(BiLLaAdapter)
register_model_adapter(RedPajamaINCITEAdapter)
register_model_adapter(H2OGPTAdapter)
register_model_adapter(SelFeeAdapter)
register_model_adapter(Llama2Adapter)
# After all adapters, try the default base adapter.
register_model_adapter(BaseAdapter)