-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopenai_llm_main.py
162 lines (123 loc) · 4.83 KB
/
openai_llm_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
import copy
import json
import time
import ray
import openai
from tqdm import tqdm
from rich.console import Console
import concurrent.futures
from dataset import PhotoChatDataset
from config import ex
from utils import fixed_seed
from load_dataset import prepare_prompt_dataset
console = Console()
error_console = Console(stderr=True, style='bold red')
mode_to_api_caller = {
'chat': openai.ChatCompletion,
'completion': openai.Completion,
}
def call_gpt3(inputs, mode, model_name, params):
# call GPT-3 API until result is provided and then return it
response = None
received = False
openai.organization = os.getenv("OPENAI_ORGANIZATION_ID")
openai.api_key = os.getenv("OPENAI_API_KEY")
while not received:
try:
if mode == 'chat':
response = mode_to_api_caller[mode].create(model=model_name, messages=inputs, **params)
elif mode == 'completion':
response = mode_to_api_caller[mode].create(model=model_name, prompt=inputs, **params)
received = True
except openai.error.OpenAIError as e:
print(f"OpenAIError: {e}.")
error = sys.exc_info()[0]
#if error == openai.error.InvalidRequestError:
# something is wrong: e.g., prompt too long
# print(f"InvalidRequestError\nPrompt passed in:\n\n{inputs}\n\n")
# assert False
time.sleep(2)
return response
def openai_inference(instance, config):
if config['mode'] == 'chat':
prompt = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": instance['prompt']}
]
elif config['mode'] == 'completion':
prompt = instance['prompt']
resp = call_gpt3(prompt, config['mode'], config['model']['name'], config['openai_params'])
#instance["{}_generation".format(config["task_num"])] = resp.choices[0].message["content"]
#return instance
return resp.choices[0].message["content"]
def multi_run_chat(dataset, config, result_save_dir):
outputs = []
with concurrent.futures.ThreadPoolExecutor(max_workers=16) as executor:
futures = []
for instance in tqdm(dataset, total=len(dataset)):
copied_instance = copy.deepcopy(instance)
future = executor.submit(openai_inference, copied_instance, config)
futures.append(future)
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
ret = future.result()
outputs.append(ret[0])
def run_chat(dataset, config):
outputs = []
for instance in tqdm(dataset, total=len(dataset)):
output = openai_inference(instance, config)
copied_instance = copy.deepcopy(instance)
copied_instance['{}_generation'.format(config['task_num'])] = output
outputs.append(copied_instance)
assert len(outputs) == len(dataset)
return outputs
@ex.automain
def main(_config):
_config = copy.deepcopy(_config)
# set CUDA
if isinstance(_config["gpu_id"], list):
cuda_devices = ",".join([
str(ele) for ele in _config["gpu_id"]
])
else:
cuda_devices = str(_config["gpu_id"])
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_devices
console.log("GPU: {}".format(cuda_devices))
# set seed
fixed_seed(_config["seed"])
result_save_dir = os.path.join(
_config['result_save_dir'],
_config['file_version'],
_config['dataset_name'],
_config['template_name'],
'seed_{}'.format(_config['seed'])
)
os.makedirs(result_save_dir, exist_ok=True)
console.log(f"Result save directory: {result_save_dir}")
dataset = prepare_prompt_dataset(_config)
#print(dataset[0])
#print(dataset[0]['prompt'])
import random
random.shuffle(dataset)
sampled_dataset = dataset[:12]
save_str = []
for ele in sampled_dataset:
save_str.append(ele['prompt'] + ' ' + ele['label'])
with open('{}.txt'.format(_config['template_name']), 'w') as f:
f.write('\n\n\n'.join(save_str))
assert False
if _config["do_sample"]:
dataset = dataset[:_config["sample_num"]]
console.log("Sampling is applied for the fast debug.")
mode = _config['mode']
if mode == 'chat':
llm_outputs = run_chat(dataset, _config)
elif mode == 'completion':
run_completion()
if _config['do_cot']:
with open(os.path.join(result_save_dir, 'cot-{}.json'.format(_config['model']['id'])), 'w') as f:
json.dump(llm_outputs, f, ensure_ascii=False, indent='\t')
else:
with open(os.path.join(result_save_dir, '{}.json'.format(_config['model']['id'])), 'w') as f:
json.dump(llm_outputs, f, ensure_ascii=False, indent='\t')