-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathibm.R
334 lines (260 loc) · 11.5 KB
/
ibm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
setwd("C:\\Users\\Patricia\\Desktop\\FIA\\TCC\\ibm-hr-analytics-attrition-dataset")
library(car)
library(readxl)
library(psych)
library(tidyr)
library(dplyr)
library(ggplot2)
library(caret)
library(e1071)
library(rpart) ##árvore de decisão
library(rpart.plot) ##árvore de decisão
library(expss)
library(corrplot)
base<-read.csv("WA_Fn-UseC_-HR-Employee-Attrition.csv", sep = ",")
df<-read.csv("WA_Fn-UseC_-HR-Employee-Attrition-pearson.csv", sep = ";")
head(base)
colnames(base)
###### correlação de pearson
m<-cor(df)
corrplot(m, method = "circle")
pairs.panels(df)
#Attrition - Employee leaving the company (0=no, 1=yes)
base$Attrition <- as.character(base$Attrition)
base$Attrition[base$Attrition == "No"] <- "0"
base$Attrition[base$Attrition == "Yes"] <- "1"
freq <- table(base$Attrition) #calculando as frequencias
#Tabela dinâmica com os percentuais. Melhor visualização que as aulas anteriores
cro_rpct(base$WorkLifeBalance, base$Attrition)
base_char <-base[,-1] #Tira a primeira coluna (id)
chrs <- sapply(base_char, is.character) #verifica as colunas qualitativas
chrCols <- names(base_char[, chrs]) #mantém em uma outra base (chrCols) só as var. qualitativas
#Macro para calcular a tabela dinâmica para todas as variáveis
for (i in chrCols){
print(i)
print(table(base_char[i]), useNA = "always")
print(cro_rpct(base_char[i], base_char$Attrition))
}
###Gráfico de pizza
pie(freq, main="Attrition", labels =c("83,88%", "16,12%"), col = c(4,2))
legend("topright", fill = c(4,2), legend = c("No leaving", "Leaving"))
ggplot(base, aes(x=factor(1), fill=Attrition))+
geom_bar(width = 1)+
coord_polar("y")
#boxplot da var. qualitaiva x resposta
boxplot(base$ï..Age~base$Attrition)
###Correlação de pearson - correlação entre variaveis
vars <- names(base)[1:4]
cor(base[,vars])
##Análise bivariada - gráfico de dispersão
plot(base$ï..Age, base$MonthlyIncome, pch=16, main = "Gráfico Dispersão",
xlab="Age", ylab="MonthlyIncome", ylim=c(500,22000))
#Cria o box plot das var. quantitativas x resposta. Forma mais bonita.
base %>%
select(ï..Age, DailyRate, DistanceFromHome,
NumCompaniesWorked, Attrition) %>%
gather(Measure, Value, -Attrition) %>%
ggplot(aes(x = factor(Attrition)
, y = Value)) +
geom_boxplot() +
facet_wrap(~Measure
, scales = "free_y")
base %>%
select(PercentSalaryHike, YearsAtCompany,
YearsInCurrentRole, YearsSinceLastPromotion, Attrition) %>%
gather(Measure, Value, -Attrition) %>%
ggplot(aes(x = factor(Attrition)
, y = Value)) +
geom_boxplot() +
facet_wrap(~Measure
, scales = "free_y")
base %>%
select( MonthlyRate, TotalWorkingYears,
MonthlyIncome, TrainingTimesLastYear, Attrition) %>%
gather(Measure, Value, -Attrition) %>%
ggplot(aes(x = factor(Attrition)
, y = Value)) +
geom_boxplot() +
facet_wrap(~Measure
, scales = "free_y")
base %>%
select( TotalWorkingYears,
TrainingTimesLastYear, Attrition) %>%
gather(Measure, Value, -Attrition) %>%
ggplot(aes(x = factor(Attrition)
, y = Value)) +
geom_boxplot() +
facet_wrap(~Measure
, scales = "free_y")
base %>%
select( StockOptionLevel, YearsWithCurrManager,
HourlyRate, Attrition) %>%
gather(Measure, Value, -Attrition) %>%
ggplot(aes(x = factor(Attrition)
, y = Value)) +
geom_boxplot() +
facet_wrap(~Measure
, scales = "free_y")
summary(base)
#painel de todas as variáveis quantitativas - correlação
basepanels<-read.csv("WA_Fn-UseC_-HR-Employee-Attrition-painels.csv", sep = ";")
pairs.panels(basepanels[1:15])
pairs.panels(basepanels[1:8])
pairs.panels(basepanels[8:15])
cor(base)
##Transformar as variáveis categóricas
#BusinessTravel - (1=No Travel, 2=Travel Frequently, 3=Tavel Rarely)
base$BusinessTravel <- as.character(base$BusinessTravel)
base$BusinessTravel[base$BusinessTravel == "Non-Travel"] <- "1"
base$BusinessTravel[base$BusinessTravel == "Travel_Frequently"] <- "2"
base$BusinessTravel[base$BusinessTravel == "Travel_Rarely"] <- "3"
table(base$BusinessTravel) #calculando as frequencias
#Department - (1=Human Resources, 2=Research & Development, 3=Sales)
base$Department <- as.character(base$Department)
base$Department[base$Department == "Human Resources"] <- "1"
base$Department[base$Department == "Research & Development"] <- "2"
base$Department[base$Department == "Sales"] <- "3"
table(base$Department) #calculando as frequencias
#Education Field - (1=Human Resources, 2=Life Sciences, 3=Marketing, 4=Medical, 5=Other)
base$EducationField <- as.character(base$EducationField)
base$EducationField[base$EducationField == "Human Resources"] <- "1"
base$EducationField[base$EducationField == "Life Sciences"] <- "2"
base$EducationField[base$EducationField == "Marketing"] <- "3"
base$EducationField[base$EducationField == "Medical"] <- "4"
base$EducationField[base$EducationField == "Other"] <- "5"
base$EducationField[base$EducationField == "Technical Degree"] <- "6"
table(base$EducationField) #calculando as frequencias
#Gender - (1=Female, 2=Male)
base$Gender <- as.character(base$Gender)
base$Gender[base$Gender == "Female"] <- "1"
base$Gender[base$Gender == "Male"] <- "2"
table(base$Gender) #calculando as frequencias
#job Role - (1=Healthcare Representative, 2=Human Resources, 3=Laboratory Technician, 4=Manager,
# 5=Manufacturing Director, 6=Research Director, 7=Research Scientist, 8=Sales Executive, 9=Sales Representative)
base$JobRole <- as.character(base$JobRole)
base$JobRole[base$JobRole == "Healthcare Representative"] <- "1"
base$JobRole[base$JobRole == "Human Resources"] <- "2"
base$JobRole[base$JobRole == "Laboratory Technician"] <- "3"
base$JobRole[base$JobRole == "Manager"] <- "4"
base$JobRole[base$JobRole == "Manufacturing Director"] <- "5"
base$JobRole[base$JobRole == "Research Director"] <- "6"
base$JobRole[base$JobRole == "Research Scientist"] <- "7"
base$JobRole[base$JobRole == "Sales Executive"] <- "8"
base$JobRole[base$JobRole == "Sales Representative"] <- "9"
table(base$JobRole) #calculando as frequencias
#mARITAL STATUS - (1=Divorced, 2=Married, 3=Single)
base$MaritalStatus <- as.character(base$MaritalStatus)
base$MaritalStatus[base$MaritalStatus == "Divorced"] <- "1"
base$MaritalStatus[base$MaritalStatus == "Married"] <- "2"
base$MaritalStatus[base$MaritalStatus == "Single"] <- "3"
table(base$MaritalStatus) #calculando as frequencias
#over18 - (1=Y, 2=N)
base$Over18 <- as.character(base$Over18)
base$Over18[base$Over18 == "Y"] <- "1"
base$Over18[base$Over18 == "N"] <- "2"
table(base$Over18) #calculando as frequencias
#over18 - (1=Y, 2=N)
base$OverTime <- as.character(base$OverTime)
base$OverTime[base$OverTime == "Yes"] <- "1"
base$OverTime[base$OverTime == "No"] <- "2"
table(base$OverTime) #calculando as frequencias
#Tranbsforma em caracter
base$EnvironmentSatisfaction <- as.character(base$EnvironmentSatisfaction)
base$Education <- as.character(base$Education)
base$JobInvolvement <- as.character(base$JobInvolvement)
base$JobLevel <- as.character(base$JobLevel)
base$JobSatisfaction <- as.character(base$JobSatisfaction)
base$PerformanceRating <- as.character(base$PerformanceRating)
base$RelationshipSatisfaction <- as.character(base$RelationshipSatisfaction)
base$WorkLifeBalance <- as.character(base$WorkLifeBalance)
#Balancear a base de dados - 50% e 50%
# Coloca os leaving em uma base de dados
leaving <- subset(base, base$Attrition==1)
#Selecionar, aleatoriamente, 237 observações dos não leaving
set.seed(123) #para obter sempre a mesma amostra
no_leaving <- subset(base, base$Attrition==0)
dt = sort(sample(nrow(no_leaving), 237))
no_leaving<-no_leaving[dt,]
# Junta as duas bases
base_balanceada = rbind(leaving, no_leaving)
table(base_balanceada$Attrition)
##transformar variável resposta em numérico
base_balanceada$Attrition <- as.numeric(as.character(base_balanceada$Attrition))
#Divide em base de treino e teste
dt = sort(sample(nrow(base_balanceada), nrow(base_balanceada)*.7))
train<-base_balanceada[dt,]
test<-base_balanceada[-dt,]
####padronização das bases
train = train %>%
mutate_if(is.numeric, scale)
test = test %>%
mutate_if(is.numeric, scale)
##transformar variável resposta em numérico
train$Attrition <- as.numeric(as.character(train$Attrition))
#Modelo GLM - regressao logistica
full.model <- glm(Attrition ~
ï..Age + BusinessTravel + DailyRate + Department+ DistanceFromHome
+Education+ EducationField
+EnvironmentSatisfaction +Gender
+HourlyRate +JobInvolvement +JobLevel
+JobRole +JobSatisfaction +MaritalStatus
+MonthlyIncome +MonthlyRate +NumCompaniesWorked
+OverTime +PercentSalaryHike
+PerformanceRating +RelationshipSatisfaction
+StockOptionLevel +TotalWorkingYears +TrainingTimesLastYear
+WorkLifeBalance +YearsAtCompany +YearsInCurrentRole
+YearsSinceLastPromotion +YearsWithCurrManager,
family=binomial(link='logit'),data=train)
summary(full.model)
####modelagem com seleção de variáveis backward
step(full.model, direction = "backward")
####retirar backward + DailyRate + Department, Education +HourlyRate
###+MonthlyIncome +PercentSalaryHike +PerformanceRating
###+StockOptionLevel +TotalWorkingYears +WorkLifeBalance
full.model_bac <- glm(Attrition ~
ï..Age + BusinessTravel + DistanceFromHome
+ EducationField
+EnvironmentSatisfaction +Gender
+JobInvolvement +JobLevel
+JobRole +JobSatisfaction +MaritalStatus
+MonthlyRate +NumCompaniesWorked
+OverTime +RelationshipSatisfaction
+TrainingTimesLastYear
+YearsAtCompany +YearsInCurrentRole
+YearsSinceLastPromotion +YearsWithCurrManager,
family=binomial(link='logit'),data=train)
summary(full.model_bac)
pred = predict(full.model_bac, train, type = "response")
finaldata = cbind(train, pred) #colocar a base de dados
describeBy(finaldata$pred , finaldata$Attrition) #media das probb por resposta
### perguntar como analisar esse describeby
#calcular as variaveis finais
finaldata$response <- as.factor(ifelse(finaldata$pred>0.7, 1, 0))
#Matriz de confusão
confusionMatrix(table(finaldata$response,finaldata$Attrition))
#### replicar na base de teste o predict
pred = predict(full.model_15,test, type = "response")
finaldata = cbind(test, pred) #colocar a base de dados
finaldata$response <- as.factor(ifelse(finaldata$pred>0.7, 1, 0))
confusionMatrix(table(finaldata$response, finaldata$Attrition))
###Árvore de decisão
arvore<- rpart(Attrition ~
BusinessTravel +DistanceFromHome
+EnvironmentSatisfaction +Gender
+JobInvolvement
+JobSatisfaction +MaritalStatus
+NumCompaniesWorked
+OverTime
+RelationshipSatisfaction
+TotalWorkingYears +TrainingTimesLastYear
+YearsAtCompany +YearsInCurrentRole
+YearsSinceLastPromotion +YearsWithCurrManager, method="class",data=train, cp)
plot(arvore, uniform=TRUE,
main="Árvore de Classificação para o Clicked")
text(arvore, use.n=TRUE, all=TRUE, cex=.8)
rpart.plot(arvore, extra = 106)
arvore <- rpart(Attrition~., data = train, method = 'class', control=rpart.control(minsplit=60, cp=0.001) )
rpart.plot(arvore, extra = 106)
pred = predict(arvore, type="class",newdata=test)
finaldata = cbind(test, pred)
confusionMatrix(finaldata$pred,finaldata$Churn2 )