-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathicp_3dlm_normals.m
181 lines (140 loc) · 4.4 KB
/
icp_3dlm_normals.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function [x, R, t, error] = icp_3dlm_normals(Model, Data, varargin)
% RUN_ICP3D A function
% ...
% Author: Andrew Fitzgibbon <awf@robots.ox.ac.uk>
% Date: 31 Aug 01
%% Parse input
inp = inputParser;
inp.addRequired('Model', @(x)isstruct(x) && isfield(x, 'vertices') && isreal(x.vertices) && size(x.vertices, 2) == 3);
inp.addRequired('Data', @(x)isstruct(x) && isfield(x, 'vertices') && isreal(x.vertices) && size(x.vertices, 2) == 3);
inp.addOptional('EstimateNormals', false, @(x)islogical(x));
inp.addOptional('initial_p', [0 0 0 1 0 0 0], @(x)isreal(x) && length(x) == 7);
inp.parse(Model, Data, varargin{:});
estimate_normals = inp.Results.EstimateNormals;
initial_p = inp.Results.initial_p;
clear('inp');
if (estimate_normals)
Model.normals = lsqnormest(Model.vertices', 4);
else
if ~isfield(Model, 'triangles') || ~isfield(Data, 'triangles')
error('Must pass triangle list')
end
Model.normals = compute_normal(Model.vertices, Model.triangles);
end
%% Setup plot
clf
set(scatter(Model.vertices, 'r.'), 'markersize', 0.5)
camlight
hold on
h = scatter(Data.vertices, '.');
view(3)
drawnow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Run minimization
%%
global run_icp3d_iter
run_icp3d_iter = 0;
m_dx = Model.normals(1, :)';
m_dy = Model.normals(2, :)';
m_dz = Model.normals(3, :)';
m_x2 = m_dx .^ 2;
m_y2 = m_dy .^ 2;
m_z2 = m_dz .^ 2;
denom = sqrt(m_x2 + m_y2 + m_z2);
m_dx = m_dx ./ denom;
m_dy = m_dy ./ denom;
m_dz = m_dz ./ denom;
icp.Mnormals = [m_dx, m_dy, m_dz]';
icp.Data = Data;
icp.handle = h;
icp.kdObj = KDTreeSearcher(Model.vertices);
icp.EstimateNormals = estimate_normals;
options = optimset('lsqnonlin');
options.TypicalX = [1 1 1 1 1 1 1];
options.TolFun = 0.0001;
options.TolX = 0.00001;
options.DiffMinChange = .001;
options.Algorithm = 'levenberg-marquardt';
options.Jacobian = 'on';
options.DerivativeCheck = 'off';
x = lsqnonlin(@(X) icp_error_with_derivs(X, icp), initial_p, [], [], options);
[R, t] = icp_deparam(x);
fit = (R * Data.vertices' + repmat(t, [1 size(Data.vertices, 1)]))';
[~, error] = knnsearch(Model.vertices, fit);
error = norm(error);
clf;
scatter(Model.vertices, 'r.');
hold on;
scatter(fit, 'b.');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dists, J] = icp_error_with_derivs(params, icp)
%% Compte Jacobian and transform data
%
data = icp.Data.vertices;
N_p = length(params);
% Compute transformed data points and Jacobians
[Tdata, Jx, Jy, Jz] = icp_3d_err_transformed(params, data);
%% Interpolate distances and calculate m-estimate
if (icp.EstimateNormals)
normals = lsqnormest(Tdata', 4);
else
normals = compute_normal(Tdata, icp.Data.triangles);
end
[idx, pdists] = knnsearch(icp.kdObj, Tdata);
closest_norms = icp.Mnormals(:, idx);
m_dx = closest_norms(1, :)';
m_dy = closest_norms(2, :)';
m_dz = closest_norms(3, :)';
d_dx = normals(1, :)';
d_dy = normals(2, :)';
d_dz = normals(3, :)';
% Calculate df(g1,x[0]) / dg1,x[0]
d_x2 = d_dx .^ 2;
d_y2 = d_dy .^ 2;
d_z2 = d_dz .^ 2;
denom = sqrt(d_x2 + d_y2 + d_z2);
df_g1_denom = denom .^ 3;
dF_g1x = (d_y2 + d_z2) ./ df_g1_denom;
dF_g1y = (d_x2 + d_z2) ./ df_g1_denom;
dF_g1z = (d_x2 + d_y2) ./ df_g1_denom;
d_dx = d_dx ./ denom;
d_dy = d_dy ./ denom;
d_dz = d_dz ./ denom;
% Calculate residuals
dists = (m_dx - d_dx) + (m_dy - d_dy) + (m_dz - d_dz);
dx = m_dx - d_dx;
dy = m_dy - d_dy;
dz = m_dz - d_dz;
dF_g1x = repmat(dF_g1x .* dx, 1, N_p);
dF_g1y = repmat(dF_g1y .* dy, 1, N_p);
dF_g1z = repmat(dF_g1z .* dz, 1, N_p);
Jx = dF_g1x .* Jx;
Jy = dF_g1y .* Jy;
Jz = dF_g1z .* Jz;
%% Scale Jacobian by distance transform
J = Jx + Jy + Jz;
J = double(J);
dists = double(dists);
%% Print iteration information and draw scatter
global run_icp3d_iter
fprintf('Iter %3d ', run_icp3d_iter);
run_icp3d_iter = run_icp3d_iter + 1;
fprintf('%5.2f ', params);
fprintf('err %g\n', norm(pdists));
set(icp.handle, ...
'xdata', Tdata(:, 1), ...
'ydata', Tdata(:, 2), ...
'zdata', Tdata(:, 3));
drawnow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,t] = icp_deparam(p)
p1 = p(1);
p2 = p(2);
p3 = p(3);
p4 = p(4);
p5 = p(5);
p6 = p(6);
p7 = p(7);
R = quat2rot([p1 p2 p3 p4]) / sum([p1 p2 p3 p4].^2);
t = [p5 p6 p7]';