-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlib.rs
90 lines (78 loc) · 2.33 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#![deny(missing_docs)]
//! Machine learning, and dynamic automatic differentiation implementation.
#[cfg(feature = "mimalloc")]
extern crate mimalloc;
#[cfg(feature = "blas")]
extern crate cblas_sys;
#[cfg(feature = "netlib")]
extern crate netlib_src;
#[cfg(feature = "openblas")]
extern crate openblas_src;
#[cfg(test)]
#[macro_use]
extern crate approx;
pub mod numbers;
#[macro_use]
pub mod array;
pub mod activation;
#[cfg(feature = "blas")]
pub mod blas;
pub mod cost;
pub mod initializer;
pub mod layer;
pub mod model;
pub mod optimizer;
#[cfg(feature = "mimalloc")]
#[global_allocator]
static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;
#[cfg(test)]
mod tests {
use super::*;
use std::rc::Rc;
use array::*;
use numbers::*;
#[test]
fn test_op() {
let mul: array::ForwardOp = Rc::new(|x: &[&Array]| {
Array::from((
x[0].dimensions().to_vec(),
x[0].values()
.iter()
.zip(x[1].values())
.map(|(x, y)| x * y)
.collect::<Vec<Float>>(),
))
});
let mul_clone = Rc::clone(&mul);
let backward_op: array::BackwardOp = Rc::new(move |children, is_tracked, delta| {
vec![
if is_tracked[0] {
Some(Array::op(
&vec![&children[1], delta],
Rc::clone(&mul_clone),
None,
))
} else {
None
},
if is_tracked[1] {
Some(Array::op(
&vec![&children[0], delta],
Rc::clone(&mul_clone),
None,
))
} else {
None
},
]
});
let a = arr![1.0, 2.0, 3.0].tracked();
let b = arr![3.0, 2.0, 1.0].tracked();
let product = Array::op(&vec![&a, &b], mul, Some(backward_op));
assert_eq!(product, arr![3.0, 4.0, 3.0]);
product.backward(None);
assert_eq!(product.gradient().to_owned().unwrap(), arr![1.0, 1.0, 1.0]);
assert_eq!(b.gradient().to_owned().unwrap(), arr![1.0, 2.0, 3.0]);
assert_eq!(a.gradient().to_owned().unwrap(), arr![3.0, 2.0, 1.0]);
}
}