-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.rs
304 lines (255 loc) · 10.4 KB
/
model.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//! A supervised neural network model, which computes a forward pass, and updates parameters based on a target.
use crate::array::*;
use crate::cost::CostFunction;
use crate::layer::Layer;
use crate::numbers::*;
use crate::optimizer::Optimizer;
/// A neural network model, containing the layers of the model, and the outputs.
pub struct Model<'a> {
layers: Vec<&'a mut dyn Layer>,
output: Option<Array>,
optimizer: &'a dyn Optimizer,
cost: &'a CostFunction,
}
impl<'a> Model<'a> {
/// Constructs a new model given the layers.
pub fn new(
layers: Vec<&'a mut dyn Layer>,
optimizer: &'a dyn Optimizer,
cost: &'a CostFunction,
) -> Model<'a> {
Model {
layers,
output: None,
optimizer,
cost,
}
}
/// Computes the forward pass of a model.
/// The input should have the dimensions batch size by input size.
pub fn forward(&mut self, mut input: Array) -> Array {
for layer in &self.layers {
input = layer.forward(input)
}
self.output = Some(input.clone());
input
}
/// Computes the backward pass of a model, and updates parameters.
pub fn backward(&mut self, target: Array) -> Float {
let output = self.output.as_ref().unwrap();
let error = (self.cost)(output, &target);
error.backward(None);
error.sum_all()
}
/// Updates all parameters of the model.
pub fn update(&mut self) {
let optimizer = self.optimizer;
let parameters = self.parameters();
optimizer.update(parameters);
}
/// Retrieves the parameters of every layer in the model.
fn parameters(&mut self) -> Vec<&mut Array> {
self.layers
.iter_mut()
.flat_map(|l| l.parameters())
.collect()
}
}
#[cfg(test)]
mod tests {
use core::ops::FnMut;
use super::*;
use crate::layer::conv::Conv;
use crate::layer::dense::Dense;
use crate::optimizer::gd::GradientDescent;
use crate::{activation, cost, initializer};
use rand::Rng;
#[cfg_attr(miri, ignore)]
fn test_gradient(model: &mut Model<'_>, cost: &CostFunction, input: Array, target: Array) -> bool {
#[cfg(feature = "f32")]
let epsilon = 0.1;
#[cfg(not(feature = "f32"))]
let epsilon = 1e-6;
let mut is_success = true;
model.forward(input.clone());
model.backward(target.clone());
// due to borrow checking, we need to keep re-borrowing, and dropping the parameters
let parameters = model.parameters();
let length = parameters.len();
std::mem::drop(parameters);
for i in 0..length {
let parameters = model.parameters();
let value_length = parameters[i].values().len();
let dimensions = parameters[i].dimensions().to_vec();
let gradient = parameters[i].gradient().to_owned().unwrap().clone();
std::mem::drop(parameters);
let mut numerator = 0.0;
let mut denominator = 0.0;
for j in 0..value_length {
let mut delta = vec![0.0; value_length];
delta[j] = epsilon;
let delta = Array::from((dimensions.clone(), delta));
let mut parameters = model.parameters();
let parameter = &mut parameters[i];
parameter.stop_tracking();
**parameter = &**parameter + δ
parameter.start_tracking();
std::mem::drop(parameters);
let result_plus = model.forward(input.clone());
let error_plus = (cost)(&result_plus, &target.clone()).sum_all();
let mut delta = vec![0.0; value_length];
delta[j] = -2.0 * epsilon;
let delta = Array::from((dimensions.clone(), delta));
let mut parameters = model.parameters();
let parameter = &mut parameters[i];
parameter.stop_tracking();
**parameter = &**parameter + δ
parameter.start_tracking();
std::mem::drop(parameters);
let result_minus = model.forward(input.clone());
let error_minus = (cost)(&result_minus, &target).sum_all();
let mut delta = vec![0.0; value_length];
delta[j] = epsilon;
let delta = Array::from((dimensions.clone(), delta));
let mut parameters = model.parameters();
let parameter = &mut parameters[i];
parameter.stop_tracking();
**parameter = &**parameter + δ
parameter.start_tracking();
std::mem::drop(parameters);
let numerical_gradient = (error_plus - error_minus) / (2.0 * epsilon);
numerator += ((gradient[j] - numerical_gradient).abs()).powf(2.0);
denominator += ((gradient[j] + numerical_gradient).abs()).powf(2.0);
}
numerator = numerator.sqrt();
denominator = denominator.sqrt();
let norm = numerator / denominator;
println!("{}", norm);
is_success &= norm < epsilon;
}
is_success
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_dense_gradient() {
let learning_rate = 0.0;
let input_size = 2;
let hidden_size = 16;
let output_size = 2;
let initializer = initializer::he();
let sigmoid = activation::sigmoid();
let softmax = activation::softmax();
let cross_entropy = cost::cross_entropy();
let gd = GradientDescent::new(learning_rate);
let mut l1 = Dense::new(input_size, hidden_size, &initializer, Some(&sigmoid));
let mut l2 = Dense::new(hidden_size, output_size, &initializer, Some(&softmax));
let mut model = Model::new(vec![&mut l1, &mut l2], &gd, &cross_entropy);
let (x, y, z, w) = (0.5, -0.25, 0.0, 1.0);
assert!(test_gradient(&mut model, &cross_entropy, arr![x, y], arr![z, w]));
}
fn test_success_retrying<F: FnMut() -> bool>(mut f: F, retries: usize) {
let mut is_success = false;
for i in 0..retries {
println!("Attempt {}", i);
is_success = f();
if is_success {
break;
}
}
assert!(is_success);
}
#[test]
#[cfg_attr(miri, ignore)]
#[cfg(not(feature = "f32"))]
fn test_add_layer_gradient() {
let learning_rate = 0.0;
let input_size = 2;
let hidden_size = 4;
let output_size = 2;
let initializer = initializer::he();
let sigmoid = activation::sigmoid();
let softmax = activation::softmax();
let cross_entropy = cost::cross_entropy();
let gd = GradientDescent::new(learning_rate);
let mut l1 = Dense::new(input_size, hidden_size, &initializer, Some(&sigmoid));
let mut l2 = Dense::new(hidden_size, output_size, &initializer, Some(&sigmoid));
let mut l3 = Dense::new(output_size, output_size, &initializer, Some(&softmax));
let mut model = Model::new(vec![&mut l1, &mut l2], &gd, &cross_entropy);
// test is flaky due to numerical stability
let (x, y, z, w) = (0.5, -0.25, 0.0, 1.0);
test_success_retrying(|| test_gradient(&mut model, &cross_entropy, arr![x, y], arr![z, w]), 5);
model.layers.push(&mut l3);
test_success_retrying(|| test_gradient(&mut model, &cross_entropy, arr![x, y], arr![z, w]), 5);
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_conv_gradient() {
use rand::Rng;
let mut rng = rand::thread_rng();
let learning_rate = 0.0;
let (image_depth, image_rows, image_cols) = (3, 9, 9);
let image_dimensions = vec![image_depth, image_rows, image_cols];
let output_dimensions = vec![1, 2, 2];
let input_size = image_dimensions.iter().product();
let output_size = output_dimensions.iter().product();
let initializer = initializer::he();
let activation = activation::relu();
let mse = cost::mse();
let gd = GradientDescent::new(learning_rate);
let mut l1 = Conv::new(
(16, image_depth, 3, 3),
(2, 2),
&initializer,
Some(activation),
);
let mut l2 = Conv::new((1, 16, 2, 2), (2, 2), &initializer, None);
let mut model = Model::new(vec![&mut l1, &mut l2], &gd, &mse);
let input = Array::from((
image_dimensions,
(0..input_size)
.map(|_| rng.gen_range(-1.0..1.0))
.collect::<Vec<Float>>(),
));
let target = Array::from((
output_dimensions,
(0..output_size)
.map(|_| rng.gen_range(0.0..1.0))
.collect::<Vec<Float>>(),
));
assert!(test_gradient(&mut model, &mse, input, target));
}
#[test]
fn test_model() {
let mut rng = rand::thread_rng();
let learning_rate = 0.1;
let batch_size = 32;
let input_size = 2;
let hidden_size = 16;
let output_size = 2;
let initializer = initializer::he();
let relu = activation::relu();
let mse = cost::mse();
let gd = GradientDescent::new(learning_rate);
let mut l1 = Dense::new(input_size, hidden_size, &initializer, Some(&relu));
let mut l2 = Dense::new(hidden_size, output_size, &initializer, None);
let mut model = Model::new(vec![&mut l1, &mut l2], &gd, &mse);
for _ in 0..3 {
let mut input = vec![0.0; input_size * batch_size];
let mut target = vec![0.0; output_size * batch_size];
for j in 0..batch_size {
let x: Float = rng.gen_range(-1.0..1.0);
let y: Float = rng.gen_range(-1.0..1.0);
input[input_size * j] = x;
input[input_size * j + 1] = y;
target[output_size * j] = x.exp();
target[output_size * j + 1] = x.exp() + y.sin();
}
let input = Array::from((vec![batch_size, input_size], input));
let target = Array::from((vec![batch_size, output_size], target));
let _result = model.forward(input.clone());
let loss = model.backward(target.clone());
model.update();
println!("loss: {}", loss);
}
}
}