-
Notifications
You must be signed in to change notification settings - Fork 31
/
tuning_postprocess_2.py
224 lines (179 loc) · 7.72 KB
/
tuning_postprocess_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os, sys
import math, time
import itertools
import contextlib
import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst
import numpy as np
import torch, torchvision
frame_format, pixel_bytes, model_precision = 'RGBA', 4, 'fp32'
model_dtype = torch.float16 if model_precision == 'fp16' else torch.float32
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
detector = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=model_precision).eval().to(device)
ssd_utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')
detection_threshold = 0.4
start_time, frames_processed = None, 0
# context manager to help keep track of ranges of time, using NVTX
@contextlib.contextmanager
def nvtx_range(msg):
depth = torch.cuda.nvtx.range_push(msg)
try:
yield depth
finally:
torch.cuda.nvtx.range_pop()
def on_frame_probe(pad, info):
global start_time, frames_processed
start_time = start_time or time.time()
with nvtx_range('on_frame_probe'):
buf = info.get_buffer()
print(f'[{buf.pts / Gst.SECOND:6.2f}]')
image_tensor = buffer_to_image_tensor(buf, pad.get_current_caps())
image_batch = preprocess(image_tensor.unsqueeze(0))
frames_processed += image_batch.size(0)
with torch.no_grad():
with nvtx_range('inference'):
locs, labels = detector(image_batch)
postprocess(locs, labels)
return Gst.PadProbeReturn.OK
def buffer_to_image_tensor(buf, caps):
with nvtx_range('buffer_to_image_tensor'):
caps_structure = caps.get_structure(0)
height, width = caps_structure.get_value('height'), caps_structure.get_value('width')
is_mapped, map_info = buf.map(Gst.MapFlags.READ)
if is_mapped:
try:
image_array = np.ndarray(
(height, width, pixel_bytes),
dtype=np.uint8,
buffer=map_info.data
)
return torch.from_numpy(
image_array[:,:,:3].copy() # RGBA -> RGB, and extend lifetime beyond subsequent unmap
)
finally:
buf.unmap(map_info)
def preprocess(image_batch):
'300x300 centre crop, normalize, HWC -> CHW'
with nvtx_range('preprocess'):
batch_dim, image_height, image_width, image_depth = image_batch.size()
copy_x, copy_y = min(300, image_width), min(300, image_height)
dest_x_offset = max(0, (300 - image_width) // 2)
source_x_offset = max(0, (image_width - 300) // 2)
dest_y_offset = max(0, (300 - image_height) // 2)
source_y_offset = max(0, (image_height - 300) // 2)
input_batch = torch.zeros((batch_dim, 300, 300, 3), dtype=model_dtype, device=device)
input_batch[:, dest_y_offset:dest_y_offset + copy_y, dest_x_offset:dest_x_offset + copy_x] = \
image_batch[:, source_y_offset:source_y_offset + copy_y, source_x_offset:source_x_offset + copy_x]
return torch.einsum(
'bhwc -> bchw',
normalize(input_batch / 255)
).contiguous()
def normalize(input_tensor):
'Nvidia SSD300 code uses mean and std-dev of 128/256'
return (2.0 * input_tensor) - 1.0
def init_dboxes():
'adapted from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Detection/SSD/src/utils.py'
fig_size = 300
feat_size = [38, 19, 10, 5, 3, 1]
steps = [8, 16, 32, 64, 100, 300]
scales = [21, 45, 99, 153, 207, 261, 315]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
fk = fig_size / torch.tensor(steps).float()
dboxes = []
# size of feature and number of feature
for idx, sfeat in enumerate(feat_size):
sk1 = scales[idx] / fig_size
sk2 = scales[idx + 1] / fig_size
sk3 = math.sqrt(sk1 * sk2)
all_sizes = [(sk1, sk1), (sk3, sk3)]
for alpha in aspect_ratios[idx]:
w, h = sk1 * math.sqrt(alpha), sk1 / math.sqrt(alpha)
all_sizes.append((w, h))
all_sizes.append((h, w))
for w, h in all_sizes:
for i, j in itertools.product(range(sfeat), repeat=2):
cx, cy = (j + 0.5) / fk[idx], (i + 0.5) / fk[idx]
dboxes.append((cx, cy, w, h))
return torch.tensor(
dboxes,
dtype=model_dtype,
device=device
).clamp(0, 1)
dboxes_xywh = init_dboxes().unsqueeze(dim=0)
scale_xy = 0.1
scale_wh = 0.2
def xywh_to_xyxy(bboxes_batch, scores_batch):
bboxes_batch = bboxes_batch.permute(0, 2, 1)
scores_batch = scores_batch.permute(0, 2, 1)
bboxes_batch[:, :, :2] = scale_xy * bboxes_batch[:, :, :2]
bboxes_batch[:, :, 2:] = scale_wh * bboxes_batch[:, :, 2:]
bboxes_batch[:, :, :2] = bboxes_batch[:, :, :2] * dboxes_xywh[:, :, 2:] + dboxes_xywh[:, :, :2]
bboxes_batch[:, :, 2:] = bboxes_batch[:, :, 2:].exp() * dboxes_xywh[:, :, 2:]
# transform format to ltrb
l, t, r, b = bboxes_batch[:, :, 0] - 0.5 * bboxes_batch[:, :, 2],\
bboxes_batch[:, :, 1] - 0.5 * bboxes_batch[:, :, 3],\
bboxes_batch[:, :, 0] + 0.5 * bboxes_batch[:, :, 2],\
bboxes_batch[:, :, 1] + 0.5 * bboxes_batch[:, :, 3]
bboxes_batch[:, :, 0] = l
bboxes_batch[:, :, 1] = t
bboxes_batch[:, :, 2] = r
bboxes_batch[:, :, 3] = b
return bboxes_batch, torch.nn.functional.softmax(scores_batch, dim=-1)
def postprocess(locs, labels):
with nvtx_range('postprocess'):
locs, probs = xywh_to_xyxy(locs, labels)
# flatten batch and classes
batch_dim, box_dim, class_dim = probs.size()
flat_locs = locs.reshape(-1, 4).repeat_interleave(class_dim, dim=0)
flat_probs = probs.view(-1)
class_indexes = torch.arange(class_dim, device=device).repeat(batch_dim * box_dim)
image_indexes = (torch.ones(box_dim * class_dim, device=device) * torch.arange(1, batch_dim + 1, device=device).unsqueeze(-1)).view(-1)
# only do NMS on detections over threshold, and ignore background (0)
threshold_mask = (flat_probs > detection_threshold) & (class_indexes > 0)
flat_locs = flat_locs[threshold_mask]
flat_probs = flat_probs[threshold_mask]
class_indexes = class_indexes[threshold_mask]
image_indexes = image_indexes[threshold_mask]
nms_mask = torchvision.ops.boxes.batched_nms(
flat_locs,
flat_probs,
class_indexes * image_indexes,
iou_threshold=0.7
)
bboxes = flat_locs[nms_mask].cpu()
probs = flat_probs[nms_mask].cpu()
class_indexes = class_indexes[nms_mask].cpu()
if bboxes.size(0) > 0:
print(bboxes, class_indexes, probs)
Gst.init()
pipeline = Gst.parse_launch(f'''
filesrc location=media/in.mp4 num-buffers=256 !
decodebin !
nvvideoconvert !
video/x-raw,format={frame_format} !
fakesink name=s
''')
pipeline.get_by_name('s').get_static_pad('sink').add_probe(
Gst.PadProbeType.BUFFER,
on_frame_probe
)
pipeline.set_state(Gst.State.PLAYING)
try:
while True:
msg = pipeline.get_bus().timed_pop_filtered(
Gst.SECOND,
Gst.MessageType.EOS | Gst.MessageType.ERROR
)
if msg:
text = msg.get_structure().to_string() if msg.get_structure() else ''
msg_type = Gst.message_type_get_name(msg.type)
print(f'{msg.src.name}: [{msg_type}] {text}')
break
finally:
finish_time = time.time()
open(f'logs/{os.path.splitext(sys.argv[0])[0]}.pipeline.dot', 'w').write(
Gst.debug_bin_to_dot_data(pipeline, Gst.DebugGraphDetails.ALL)
)
pipeline.set_state(Gst.State.NULL)
print(f'FPS: {frames_processed / (finish_time - start_time):.2f}')