diff --git a/Paper.tex b/Paper.tex index 3373070e..365b585e 100644 --- a/Paper.tex +++ b/Paper.tex @@ -1995,7 +1995,7 @@ \subsection{Instruction Set} \midrule 0xf2 & {\small CALLCODE} & 7 & 1 & Message-call into this account with an alternative account's code. \\ &&&& Exactly equivalent to {\small CALL} except: \\ -&&&& $(\boldsymbol{\sigma}', g', A^+, \mathbf{o}) \equiv \begin{cases}\begin{array}{l}\Theta(\boldsymbol{\sigma}^*, I_a, I_o, I_a, t,\\\quad C_{\text{\tiny CALLGAS}}(\boldsymbol{\mu}), I_p, \boldsymbol{\mu}_\mathbf{s}[2], \boldsymbol{\mu}_\mathbf{s}[2], \mathbf{i}, I_e + 1)\end{array} & \begin{array}{l}\text{if} \quad \boldsymbol{\mu}_\mathbf{s}[2] \leqslant \boldsymbol{\sigma}[I_a]_b \;\wedge\\ \quad\quad{}I_e < 1024\end{array} \\ (\boldsymbol{\sigma}, g, \varnothing, \mathbf{o}) & \text{otherwise} \end{cases}$ \\ +&&&& $(\boldsymbol{\sigma}', g', A^+, \mathbf{o}) \equiv \begin{cases}\begin{array}{l}\Theta(\boldsymbol{\sigma}^*, I_a, I_o, I_a, t,\\\quad C_{\text{\tiny CALLGAS}}(\boldsymbol{\mu}), I_p, \boldsymbol{\mu}_\mathbf{s}[2], \boldsymbol{\mu}_\mathbf{s}[2], \mathbf{i}, I_e + 1)\end{array} & \begin{array}{l}\text{if} \quad \boldsymbol{\mu}_\mathbf{s}[2] \leqslant \boldsymbol{\sigma}[I_a]_b \;\wedge\\ \quad\quad{}I_e < 1024\end{array} \\ (\boldsymbol{\sigma}, g, \varnothing, ()) & \text{otherwise} \end{cases}$ \\ &&&& Note the change in the fourth parameter to the call $\Theta$ from the 2nd stack value $\boldsymbol{\mu}_\mathbf{s}[1]$\\ &&&& (as in {\small CALL}) to the present address $I_a$. This means that the recipient is in fact the\\ &&&& same account as at present, simply that the code is overwritten.\\ @@ -2015,7 +2015,7 @@ \subsection{Instruction Set} &&&& argument is $\boldsymbol{\mu}_\mathbf{s}[2]$. As a result, $\boldsymbol{\mu}_\mathbf{s}[3]$, $\boldsymbol{\mu}_\mathbf{s}[4]$, $\boldsymbol{\mu}_\mathbf{s}[5]$ and $\boldsymbol{\mu}_\mathbf{s}[6]$ in the definition of {\small CALL} \\ &&&& should respectively be replaced with $\boldsymbol{\mu}_\mathbf{s}[2]$, $\boldsymbol{\mu}_\mathbf{s}[3]$, $\boldsymbol{\mu}_\mathbf{s}[4]$ and $\boldsymbol{\mu}_\mathbf{s}[5]$. \\ &&&& Otherwise exactly equivalent to {\small CALL} except: \\ -&&&& $(\boldsymbol{\sigma}', g', A^+, \mathbf{o}) \equiv \begin{cases}\begin{array}{l}\Theta(\boldsymbol{\sigma}^*, I_s, I_o, I_a, t,\\\quad \boldsymbol{\mu}_\mathbf{s}[0], I_p, 0, I_v, \mathbf{i}, I_e + 1)\end{array} & \text{if} \quad I_v \leqslant \boldsymbol{\sigma}[I_a]_b \;\wedge\; I_e < 1024 \\ (\boldsymbol{\sigma}, g, \varnothing, \mathbf{o}) & \text{otherwise} \end{cases}$ \\ +&&&& $(\boldsymbol{\sigma}', g', A^+, \mathbf{o}) \equiv \begin{cases}\begin{array}{l}\Theta(\boldsymbol{\sigma}^*, I_s, I_o, I_a, t,\\\quad \boldsymbol{\mu}_\mathbf{s}[0], I_p, 0, I_v, \mathbf{i}, I_e + 1)\end{array} & \text{if} \quad I_v \leqslant \boldsymbol{\sigma}[I_a]_b \;\wedge\; I_e < 1024 \\ (\boldsymbol{\sigma}, g, \varnothing, ()) & \text{otherwise} \end{cases}$ \\ &&&& Note the changes (in addition to that of the fourth parameter) to the second \\ &&&& and ninth parameters to the call $\Theta$.\\ &&&& This means that the recipient is in fact the same account as at present, simply\\