-
Notifications
You must be signed in to change notification settings - Fork 0
/
ann.py
89 lines (73 loc) · 3.02 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
# import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix, accuracy_score
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
# Importing the dataset
def read_data():
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
return X, y
# Encoding categorical data
def preprocess_data(X):
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features=[1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
return X
# Splitting the dataset into the Training set and Test set
def split_data(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
return X_train, X_test, y_train, y_test
# Feature Scaling
def scale_features(X_train, X_test):
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
return X_train, X_test
def build_classifier():
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units=6, kernel_initializer='uniform', activation='relu', input_dim=11))
# Adding the second hidden layer
classifier.add(Dense(units=6, kernel_initializer='uniform', activation='relu'))
# Adding the output layer
classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))
# Compiling the ANN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return classifier
def simple_deep_learning_model():
X, y = read_data()
X = preprocess_data(X)
X_train, X_test, y_train, y_test = split_data(X, y)
X_train, X_test = scale_features(X_train, X_test)
classifier = build_classifier()
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size=10, epochs=100)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print (accuracy_score(y_pred, y_test))
def deep_learning_model_cross_validation():
X, y = read_data()
X = preprocess_data(X)
X_train, X_test, y_train, y_test = split_data(X, y)
X_train, X_test = scale_features(X_train, X_test)
classifier = KerasClassifier(build_fn=build_classifier, batch_size=16, epochs=100)
accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=10)
print(np.mean(accuracies))
if __name__ == '__main__':
# simple_deep_learning_model()
deep_learning_model_cross_validation()