-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
94 lines (69 loc) · 2.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import os
import torch
from data import PlantVillageDataset
from eval import evaluate, predict
from model import CNN
from train import load_model, save_model, train_model
from vis import show_loss_accuracy
# hyperparameters
batch_size = 64
image_size = 224
num_epochs = 50
lr = 0.001
lr_finetune = 0.0001
weight_decay = 0.0001
early_stop_patience = 5
early_stop_delta = 0.001
# for lr_scheduler of type ReduceLROnPlateau
lr_scheduler_patience = 3
lr_scheduler_factor = 0.1
lr_scheduler_mode = 'min'
# for lr_scheduler of type StepLR
# lr_scheduler_step_size = 7
# lr_scheduler_gamma = 0.1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # use GPU if available
# commands:
# python main.py train --model mobilenet_v2 --freeze
# python main.py test --model mobilenet_v2 --freeze
parser = argparse.ArgumentParser(description='Train a model on PlantVillage dataset')
parser.add_argument('command', type=str, help='Command to execute')
parser.add_argument('--model', type=str, help='Model to use')
parser.add_argument('--freeze', action='store_true', help='Freeze the model (use feature extractor only)')
args = parser.parse_args()
if args.command == 'train':
print('Training...')
print(f'Model: {args.model}')
print(f'Freeze: {args.freeze}')
PlantVillageDataset.download()
loaders = PlantVillageDataset.prepare()
num_classes = len(loaders['train'].dataset.classes)
model = CNN(args.model, device, args.freeze, num_classes)
learning_rate = lr if args.freeze else lr_finetune
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=lr_scheduler_mode, factor=lr_scheduler_factor, patience=lr_scheduler_patience, verbose=True)
model, stats = train_model(loaders, model, criterion, optimizer, scheduler, device, num_epochs, early_stop_patience, early_stop_delta)
print('Training completed!')
show_loss_accuracy(stats)
os.makedirs('weights', exist_ok=True)
save_model(model, f'weights/{args.model}_{'fe' if args.freeze else 'ft'}.pth')
elif args.command == 'test':
print('Testing...')
print(f'Model: {args.model}')
print(f'Freeze: {args.freeze}')
if not os.path.exists(f'weights/{args.model}.pth'):
print(f'weights/{args.model}.pth does not exist. Please train the model first.')
exit()
PlantVillageDataset.download()
loaders = PlantVillageDataset.prepare()
model = CNN(args.model, device, args.freeze)
load_model(model, f'weights/{args.model}_{'fe' if args.freeze else 'ft'}.pth', device)
y_true, y_pred = predict(model, loaders, device)
accuracy, precision, recall, f1_score = evaluate(y_true, y_pred)
print(f'Accuracy: {accuracy:.4f}')
print(f'Precision: {precision:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1_score:.4f}')
else:
print(f'Command {args.command} not recognized')