-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathfusion.py
147 lines (119 loc) Β· 3.87 KB
/
fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
from __future__ import print_function
from evaluate import evaluate_class
from DB import Database
from color import Color
from daisy import Daisy
from edge import Edge
from gabor import Gabor
from HOG import HOG
from vggnet import VGGNetFeat
from resnet import ResNetFeat
import numpy as np
import itertools
import os
d_type = 'd1'
depth = 30
feat_pools = ['color', 'daisy', 'edge', 'gabor', 'hog', 'vgg', 'res']
# result dir
result_dir = 'result'
if not os.path.exists(result_dir):
os.makedirs(result_dir)
class FeatureFusion(object):
def __init__(self, features):
assert len(features) > 1, "need to fuse more than one feature!"
self.features = features
self.samples = None
def make_samples(self, db, verbose=False):
if verbose:
print("Use features {}".format(" & ".join(self.features)))
if self.samples == None:
feats = []
for f_class in self.features:
feats.append(self._get_feat(db, f_class))
samples = self._concat_feat(db, feats)
self.samples = samples # cache the result
return self.samples
def _get_feat(self, db, f_class):
if f_class == 'color':
f_c = Color()
elif f_class == 'daisy':
f_c = Daisy()
elif f_class == 'edge':
f_c = Edge()
elif f_class == 'gabor':
f_c = Gabor()
elif f_class == 'hog':
f_c = HOG()
elif f_class == 'vgg':
f_c = VGGNetFeat()
elif f_class == 'res':
f_c = ResNetFeat()
return f_c.make_samples(db, verbose=False)
def _concat_feat(self, db, feats):
samples = feats[0]
delete_idx = []
for idx in range(len(samples)):
for feat in feats[1:]:
feat = self._to_dict(feat)
key = samples[idx]['img']
if key not in feat:
delete_idx.append(idx)
continue
assert feat[key]['cls'] == samples[idx]['cls']
samples[idx]['hist'] = np.append(samples[idx]['hist'], feat[key]['hist'])
for d_idx in sorted(set(delete_idx), reverse=True):
del samples[d_idx]
if delete_idx != []:
print("Ignore %d samples" % len(set(delete_idx)))
return samples
def _to_dict(self, feat):
ret = {}
for f in feat:
ret[f['img']] = {
'cls': f['cls'],
'hist': f['hist']
}
return ret
def evaluate_feats(db, N, feat_pools=feat_pools, d_type='d1', depths=[None, 300, 200, 100, 50, 30, 10, 5, 3, 1]):
result = open(os.path.join(result_dir, 'feature_fusion-{}-{}feats.csv'.format(d_type, N)), 'w')
for i in range(N):
result.write("feat{},".format(i))
result.write("depth,distance,MMAP")
combinations = itertools.combinations(feat_pools, N)
for combination in combinations:
fusion = FeatureFusion(features=list(combination))
for d in depths:
APs = evaluate_class(db, f_instance=fusion, d_type=d_type, depth=d)
cls_MAPs = []
for cls, cls_APs in APs.items():
MAP = np.mean(cls_APs)
cls_MAPs.append(MAP)
r = "{},{},{},{}".format(",".join(combination), d, d_type, np.mean(cls_MAPs))
print(r)
result.write('\n'+r)
print()
result.close()
if __name__ == "__main__":
db = Database()
# evaluate features double-wise
evaluate_feats(db, N=2, d_type='d1')
# evaluate features triple-wise
evaluate_feats(db, N=3, d_type='d1')
# evaluate features quadra-wise
evaluate_feats(db, N=4, d_type='d1')
# evaluate features penta-wise
evaluate_feats(db, N=5, d_type='d1')
# evaluate features hexa-wise
evaluate_feats(db, N=6, d_type='d1')
# evaluate features hepta-wise
evaluate_feats(db, N=7, d_type='d1')
# evaluate database
fusion = FeatureFusion(features=['color', 'daisy'])
APs = evaluate_class(db, f_instance=fusion, d_type=d_type, depth=depth)
cls_MAPs = []
for cls, cls_APs in APs.items():
MAP = np.mean(cls_APs)
print("Class {}, MAP {}".format(cls, MAP))
cls_MAPs.append(MAP)
print("MMAP", np.mean(cls_MAPs))