-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayes_inference.py
111 lines (87 loc) · 4.25 KB
/
Bayes_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
"""
@author: Po-Kan (William) Shih
@advisor: Dr.Bahman Moraffah
"""
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi'] = 100
plt.rcParams['font.size'] = 12
# =============================================================================
# Likelihood Function:
# compute the joint likelihood of the samples given every mean and variance sampled
# from prior distribution. Since samples are assumed drawn i.i.d,
# joint likelihood can be factored into product of likelihood of each sample
# take normal distribution as likelihood distribution
# =============================================================================
def Likelihood(data, mu, var):
# initialize the joint likelihood value
like = 1
for datum in data:
# calc likelihood of each sample, then multiply them
pdf_val = st.norm(mu, np.sqrt(var)).pdf(datum)
like *= pdf_val
# return likelihood value of the sample set
return like
# =============================================================================
# generate samples (dataset) from a normal distribution
# =============================================================================
# parameters of true distribution that samples are from
mean = 5 # true mean
var = 3 # true variance
# sample from true distribution
sample = st.norm(mean, var).rvs(20)
# =============================================================================
# mean & variance joint prior distribution
# divide the joint prior into 2 indep. priors for mean & variance, respectively
# for variance, use its reciprocal, precision, for prior dist. instead
# so Normal inverse Gamma (joint prior) => Normal (mean) * inverse Gamma (precision)
# =============================================================================
# define value ranges of mean & precision priors
mean_prior = np.linspace(0, 10, 50)
prec_prior = np.linspace(0.1, 1, 50)
# hyperparameters of mean prior (normal distribution)
hyper_mu = 3
hyper_sigma = np.var(sample)
# hyperparameter of precision prior (inverse gamma dist.) (beta = 1)
alpha = 0.1
# calc mean & precision priors probability values, respectively
mean_prior_pdf = st.norm(hyper_mu, np.sqrt(hyper_sigma)).pdf(mean_prior)
prec_prior_pdf = st.invgamma(alpha).pdf(prec_prior)
prior = np.zeros((len(prec_prior), len(mean_prior)))
# combine the joint prior as product of mean prior & precision prior
for i in range(prec_prior.shape[0]):
prior[i, :] = prec_prior_pdf[i] * mean_prior_pdf[:]
# plot the 2D colormap of the joint prior
prior = np.flipud(prior)
# imshow: extent = [x_min , x_max, y_min , y_max] sets x, y axis values
plt.imshow(prior, cmap = "plasma", extent = [0, 10, 0.1, 1], aspect = "auto")
plt.xlabel("mean value")
plt.ylabel("precision value")
plt.title("prior (Normal Inverse Gamma) distribution\ncolor represents prior probability value")
plt.show()
# =============================================================================
# mean & variance joint posterior distribution
# for every (mean, precision) pair in joint prior, calc its corresponding
# proportional posterior = likelihood * prior
# doesn't take prob. of sample set into account, it's constant for mean & precision
# =============================================================================
posterior = np.zeros((len(prec_prior), len(mean_prior)))
# for every (mean, precision) point in joint prior, calc posterior
for i in range(prec_prior.shape[0]):
for j in range(mean_prior.shape[0]):
# variance = 1/(precision)
vari = prec_prior[i]**(-1)
# calc likelihood given (mean, variance) parameter pair
L = Likelihood(sample, mean_prior[j], vari)
# calc proportional posterior
posterior[i, j] = prec_prior_pdf[i] * mean_prior_pdf[j] * L
# plot the 2D colormap of the joint posterior
posterior = np.flipud(posterior)
# imshow: extent = [x_min , x_max, y_min , y_max] sets x, y axis values
plt.imshow(posterior, cmap = "plasma", extent = [0, 10, 0.1, 1], aspect = "auto")
plt.xlabel("mean value")
plt.ylabel("precision value")
plt.title("posterior distribution\ncolor represents prior probability value")
plt.show()