-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathdata_loader.py
111 lines (100 loc) · 4.6 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# original code is from https://github.com/aaron-xichen/pytorch-playground
# modified by Kimin Lee
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import os
def getSVHN(batch_size, TF, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
data_root = os.path.expanduser(os.path.join(data_root, 'svhn-data'))
num_workers = kwargs.setdefault('num_workers', 1)
kwargs.pop('input_size', None)
def target_transform(target):
new_target = target - 1
if new_target == -1:
new_target = 9
return new_target
ds = []
if train:
train_loader = torch.utils.data.DataLoader(
datasets.SVHN(
root=data_root, split='train', download=True,
transform=TF,
),
batch_size=batch_size, shuffle=True, **kwargs)
ds.append(train_loader)
if val:
test_loader = torch.utils.data.DataLoader(
datasets.SVHN(
root=data_root, split='test', download=True,
transform=TF,
),
batch_size=batch_size, shuffle=False, **kwargs)
ds.append(test_loader)
ds = ds[0] if len(ds) == 1 else ds
return ds
def getCIFAR10(batch_size, TF, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
data_root = os.path.expanduser(os.path.join(data_root, 'cifar10-data'))
num_workers = kwargs.setdefault('num_workers', 1)
kwargs.pop('input_size', None)
ds = []
if train:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(
root=data_root, train=True, download=True,
transform=TF),
batch_size=batch_size, shuffle=True, **kwargs)
ds.append(train_loader)
if val:
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(
root=data_root, train=False, download=True,
transform=TF),
batch_size=batch_size, shuffle=False, **kwargs)
ds.append(test_loader)
ds = ds[0] if len(ds) == 1 else ds
return ds
def getCIFAR100(batch_size, TF, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
data_root = os.path.expanduser(os.path.join(data_root, 'cifar100-data'))
num_workers = kwargs.setdefault('num_workers', 1)
kwargs.pop('input_size', None)
ds = []
if train:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(
root=data_root, train=True, download=True,
transform=TF),
batch_size=batch_size, shuffle=True, **kwargs)
ds.append(train_loader)
if val:
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(
root=data_root, train=False, download=True,
transform=TF),
batch_size=batch_size, shuffle=False, **kwargs)
ds.append(test_loader)
ds = ds[0] if len(ds) == 1 else ds
return ds
def getTargetDataSet(data_type, batch_size, input_TF, dataroot):
if data_type == 'cifar10':
train_loader, test_loader = getCIFAR10(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
elif data_type == 'cifar100':
train_loader, test_loader = getCIFAR100(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
elif data_type == 'svhn':
train_loader, test_loader = getSVHN(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
return train_loader, test_loader
def getNonTargetDataSet(data_type, batch_size, input_TF, dataroot):
if data_type == 'cifar10':
_, test_loader = getCIFAR10(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
elif data_type == 'svhn':
_, test_loader = getSVHN(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
elif data_type == 'cifar100':
_, test_loader = getCIFAR100(batch_size=batch_size, TF=input_TF, data_root=dataroot, num_workers=1)
elif data_type == 'imagenet_resize':
dataroot = os.path.expanduser(os.path.join(dataroot, 'Imagenet_resize'))
testsetout = datasets.ImageFolder(dataroot, transform=input_TF)
test_loader = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=False, num_workers=1)
elif data_type == 'lsun_resize':
dataroot = os.path.expanduser(os.path.join(dataroot, 'LSUN_resize'))
testsetout = datasets.ImageFolder(dataroot, transform=input_TF)
test_loader = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=False, num_workers=1)
return test_loader