-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathMakeSupplementaryFigure1.py
157 lines (139 loc) · 4.45 KB
/
MakeSupplementaryFigure1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# coding: utf-8
"""
create supplementary figure 1
showing decisions and confidence/similarity
- also add details from models, and sort by overall p(yes)
"""
import os
import pandas
import seaborn
import matplotlib.pyplot as plt
from matplotlib import colors
from narps import Narps
from narps import NarpsDirs # noqa, flake8 issue
from utils import log_to_file
def get_all_metadata(narps):
metadata = pandas.read_csv(
os.path.join(
narps.dirs.dirs['metadata'],
'all_metadata.csv'))
return(metadata)
def mk_supp_figure1(narps, metadata):
decision_wide = metadata.pivot(
index='teamID',
columns='varnum',
values='Decision')
confidence_wide = metadata.pivot(
index='teamID',
columns='varnum',
values='Confidence')
# sort by mean acceptance
decision_wide['mean'] = decision_wide.mean(axis=1)
confidence_wide['mean'] = decision_wide.mean(axis=1)
decision_wide = decision_wide.sort_values(
'mean', ascending=False)
del decision_wide['mean']
confidence_wide = confidence_wide.sort_values(
'mean', ascending=False)
del confidence_wide['mean']
# merge with analysis metadata
metadata_selected = metadata.query('varnum==1')[
['teamID', 'fwhm', 'package',
'used_fmriprep_data',
'testing', 'movement_modeling']
]
metadata_selected.index = metadata_selected.teamID
decision_wide_merged = decision_wide.join(
metadata_selected
)
metadata_merged = decision_wide_merged.drop(
columns=[i for i in range(1, 10)] + ['teamID'])
# make everything into short strings
metadata_merged['movement_modeling'] = [
['No', 'Yes'][i] for i in metadata_merged.movement_modeling.values]
metadata_merged['fwhm'] = [
'%0.2f' % i for i in metadata_merged.fwhm.values]
metadata_merged.fwhm.replace(
{'nan': ''}, inplace=True)
testing_convert = {'parametric': 'P',
'permutations': 'NP',
'randomise': 'NP',
'ARI': 'Other',
'Other': 'Other'}
metadata_merged['testing'] = [
testing_convert[i] for i in metadata_merged.testing.values]
metadata_merged.rename(columns={
'used_fmriprep_data': 'fmriprep'},
inplace=True)
cmap = colors.ListedColormap(
['#CD5C5C', '#9dc183'])
plt.figure(figsize=(12, 18))
plt.subplot(1, 2, 1)
h = seaborn.heatmap(
decision_wide,
cmap=cmap,
annot=confidence_wide,
fmt="d",
annot_kws={'size': 12},
cbar=False)
h.axes.set_yticklabels(h.axes.get_ymajorticklabels(), fontsize=12)
h.axes.set_xticklabels(h.axes.get_xmajorticklabels(), fontsize=14)
plt.subplots_adjust(bottom=0.05, top=0.99)
plt.tight_layout()
plt.xlabel('Hypothesis number', fontsize=16)
plt.ylabel('Team ID', fontsize=16)
# now plot modeling info for teams
plt.subplot(1, 2, 2)
hmap_data = metadata_merged.copy()
hmap_data.iloc[:, :] = 1
seaborn.heatmap(
hmap_data,
annot=metadata_merged,
fmt='',
annot_kws={'size': 12},
cbar=False,
cmap=colors.ListedColormap(
['#FFFFFF']),
yticklabels=False)
ax = plt.gca()
ax.set_ylabel('')
plt.tight_layout()
plt.savefig(os.path.join(
narps.dirs.dirs['figures'],
'SuppFigure1.png'))
# save data to file
metadata_merged.to_csv(
os.path.join(
narps.dirs.dirs['figures'],
'MethodsTableMetadataMerged.csv')
)
decision_wide.to_csv(
os.path.join(
narps.dirs.dirs['figures'],
'DecisionDataWide.csv')
)
confidence_wide.to_csv(
os.path.join(
narps.dirs.dirs['figures'],
'ConfidenceDataWide.csv')
)
if __name__ == "__main__":
# set an environment variable called NARPS_BASEDIR
# with location of base directory
if 'NARPS_BASEDIR' in os.environ:
basedir = os.environ['NARPS_BASEDIR']
else:
basedir = '/tmp/data'
# setup main class
narps = Narps(basedir, dataurl=os.environ['DATA_URL'])
narps.load_data()
logfile = os.path.join(
narps.dirs.dirs['logs'],
'MakeSupplementaryFigure1.txt')
log_to_file(
logfile,
'running MakeSupplementaryFigure1.py',
flush=True)
metadata = get_all_metadata(narps)
mk_supp_figure1(narps, metadata)