-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_manipulation.py
82 lines (57 loc) · 2.83 KB
/
tensorflow_manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
def dummy_creation(df, dummy_categories):
for i in dummy_categories:
df_dummy = pd.get_dummies(df[i])
df = pd.concat([df,df_dummy],axis=1)
df = df.drop(i, axis=1)
return(df)
def train_test_splitter(DataFrame, column):
df_train = DataFrame.loc[df[column] != 1]
df_test = DataFrame.loc[df[column] == 1]
df_train = df_train.drop(column, axis=1)
df_test = df_test.drop(column, axis=1)
return(df_train, df_test)
def label_delineator(df_train, df_test, label):
train_data = df_train.drop(label, axis=1).values
train_labels = df_train[label].values
test_data = df_test.drop(label,axis=1).values
test_labels = df_test[label].values
return(train_data, train_labels, test_data, test_labels)
def data_normalizer(train_data, test_data):
train_data = preprocessing.MinMaxScaler().fit_transform(train_data)
test_data = preprocessing.MinMaxScaler().fit_transform(test_data)
return(train_data, test_data)
def predictor(test_data, test_labels, index):
prediction = model.predict(test_data)
if np.argmax(prediction[index]) == test_labels[index]:
print(f'This was correctly predicted to be a \"{test_labels[index]}\"!')
else:
print(f'This was incorrectly predicted to be a \"{np.argmax(prediction[index])}\". It was actually a \"{test_labels[index]}\".')
return(prediction)
if(__name__ == "__main__"):
print("begin")
df = pd.read_csv('archive/pokemon_alopez247.csv')
df = df[['isLegendary','Generation', 'Type_1', 'Type_2', 'HP', 'Attack', 'Defense', 'Sp_Atk', 'Sp_Def', 'Speed','Color','Egg_Group_1','Height_m','Weight_kg','Body_Style']]
df['isLegendary'] = df['isLegendary'].astype(int)
df = dummy_creation(df, ['Egg_Group_1', 'Body_Style', 'Color','Type_1', 'Type_2'])
# Write pandas dataframe to CSV file
df.to_csv('archive/checkpoint.csv', index=False)
df_train, df_test = train_test_splitter(df, 'Generation')
train_data, train_labels, test_data, test_labels = label_delineator(df_train, df_test, 'isLegendary')
train_data, test_data = data_normalizer(train_data, test_data)
print("normalizing complete")
length = train_data.shape[1]
model = keras.Sequential()
model.add(keras.layers.Dense(500, activation='relu', input_shape=[length,]))
model.add(keras.layers.Dense(2, activation='softmax'))
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels, epochs=400)
print("fitting complete")
loss_value, accuracy_value = model.evaluate(test_data, test_labels)
print(f'Our test accuracy was {accuracy_value}')
print(predictor(test_data, test_labels, 149))