-
Notifications
You must be signed in to change notification settings - Fork 57
/
model.py
217 lines (177 loc) · 13.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
from typing import Union, Tuple, List, Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from backbone.base import Base as BackboneBase
from bbox import BBox
from extension.functional import beta_smooth_l1_loss
from roi.pooler import Pooler
from rpn.region_proposal_network import RegionProposalNetwork
from support.layer.nms import nms
class Model(nn.Module):
def __init__(self, backbone: BackboneBase, num_classes: int, pooler_mode: Pooler.Mode,
anchor_ratios: List[Tuple[int, int]], anchor_sizes: List[int],
rpn_pre_nms_top_n: int, rpn_post_nms_top_n: int,
anchor_smooth_l1_loss_beta: Optional[float] = None, proposal_smooth_l1_loss_beta: Optional[float] = None):
super().__init__()
self.features, hidden, num_features_out, num_hidden_out = backbone.features()
self._bn_modules = nn.ModuleList([it for it in self.features.modules() if isinstance(it, nn.BatchNorm2d)] +
[it for it in hidden.modules() if isinstance(it, nn.BatchNorm2d)])
# NOTE: It's crucial to freeze batch normalization modules for few batches training, which can be done by following processes
# (1) Change mode to `eval`
# (2) Disable gradient (we move this process into `forward`)
for bn_module in self._bn_modules:
for parameter in bn_module.parameters():
parameter.requires_grad = False
self.rpn = RegionProposalNetwork(num_features_out, anchor_ratios, anchor_sizes, rpn_pre_nms_top_n, rpn_post_nms_top_n, anchor_smooth_l1_loss_beta)
self.detection = Model.Detection(pooler_mode, hidden, num_hidden_out, num_classes, proposal_smooth_l1_loss_beta)
def forward(self, image_batch: Tensor,
gt_bboxes_batch: Tensor = None, gt_classes_batch: Tensor = None) -> Union[Tuple[Tensor, Tensor, Tensor, Tensor],
Tuple[Tensor, Tensor, Tensor, Tensor]]:
# disable gradient for each forwarding process just in case model was switched to `train` mode at any time
for bn_module in self._bn_modules:
bn_module.eval()
features = self.features(image_batch)
batch_size, _, image_height, image_width = image_batch.shape
_, _, features_height, features_width = features.shape
anchor_bboxes = self.rpn.generate_anchors(image_width, image_height, num_x_anchors=features_width, num_y_anchors=features_height).to(features).repeat(batch_size, 1, 1)
if self.training:
anchor_objectnesses, anchor_transformers, anchor_objectness_losses, anchor_transformer_losses = self.rpn.forward(features, anchor_bboxes, gt_bboxes_batch, image_width, image_height)
proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height).detach() # it's necessary to detach `proposal_bboxes` here
proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses = self.detection.forward(features, proposal_bboxes, gt_classes_batch, gt_bboxes_batch)
return anchor_objectness_losses, anchor_transformer_losses, proposal_class_losses, proposal_transformer_losses
else:
anchor_objectnesses, anchor_transformers = self.rpn.forward(features)
proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height)
proposal_classes, proposal_transformers = self.detection.forward(features, proposal_bboxes)
detection_bboxes, detection_classes, detection_probs, detection_batch_indices = self.detection.generate_detections(proposal_bboxes, proposal_classes, proposal_transformers, image_width, image_height)
return detection_bboxes, detection_classes, detection_probs, detection_batch_indices
def save(self, path_to_checkpoints_dir: str, step: int, optimizer: Optimizer, scheduler: _LRScheduler) -> str:
path_to_checkpoint = os.path.join(path_to_checkpoints_dir, f'model-{step}.pth')
checkpoint = {
'state_dict': self.state_dict(),
'step': step,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(checkpoint, path_to_checkpoint)
return path_to_checkpoint
def load(self, path_to_checkpoint: str, optimizer: Optimizer = None, scheduler: _LRScheduler = None) -> 'Model':
checkpoint = torch.load(path_to_checkpoint)
self.load_state_dict(checkpoint['state_dict'])
step = checkpoint['step']
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
return step
class Detection(nn.Module):
def __init__(self, pooler_mode: Pooler.Mode, hidden: nn.Module, num_hidden_out: int, num_classes: int, proposal_smooth_l1_loss_beta: float):
super().__init__()
self._pooler_mode = pooler_mode
self.hidden = hidden
self.num_classes = num_classes
self._proposal_class = nn.Linear(num_hidden_out, num_classes)
self._proposal_transformer = nn.Linear(num_hidden_out, num_classes * 4)
self._proposal_smooth_l1_loss_beta = proposal_smooth_l1_loss_beta
self._transformer_normalize_mean = torch.tensor([0., 0., 0., 0.], dtype=torch.float)
self._transformer_normalize_std = torch.tensor([.1, .1, .2, .2], dtype=torch.float)
def forward(self, features: Tensor, proposal_bboxes: Tensor,
gt_classes_batch: Optional[Tensor] = None, gt_bboxes_batch: Optional[Tensor] = None) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]:
batch_size = features.shape[0]
if not self.training:
proposal_batch_indices = torch.arange(end=batch_size, dtype=torch.long, device=proposal_bboxes.device).view(-1, 1).repeat(1, proposal_bboxes.shape[1])
pool = Pooler.apply(features, proposal_bboxes.view(-1, 4), proposal_batch_indices.view(-1), mode=self._pooler_mode)
hidden = self.hidden(pool)
hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
hidden = hidden.view(hidden.shape[0], -1)
proposal_classes = self._proposal_class(hidden)
proposal_transformers = self._proposal_transformer(hidden)
proposal_classes = proposal_classes.view(batch_size, -1, proposal_classes.shape[-1])
proposal_transformers = proposal_transformers.view(batch_size, -1, proposal_transformers.shape[-1])
return proposal_classes, proposal_transformers
else:
# find labels for each `proposal_bboxes`
labels = torch.full((batch_size, proposal_bboxes.shape[1]), -1, dtype=torch.long, device=proposal_bboxes.device)
ious = BBox.iou(proposal_bboxes, gt_bboxes_batch)
proposal_max_ious, proposal_assignments = ious.max(dim=2)
labels[proposal_max_ious < 0.5] = 0
fg_masks = proposal_max_ious >= 0.5
if len(fg_masks.nonzero()) > 0:
labels[fg_masks] = gt_classes_batch[fg_masks.nonzero()[:, 0], proposal_assignments[fg_masks]]
# select 128 x `batch_size` samples
fg_indices = (labels > 0).nonzero()
bg_indices = (labels == 0).nonzero()
fg_indices = fg_indices[torch.randperm(len(fg_indices))[:min(len(fg_indices), 32 * batch_size)]]
bg_indices = bg_indices[torch.randperm(len(bg_indices))[:128 * batch_size - len(fg_indices)]]
selected_indices = torch.cat([fg_indices, bg_indices], dim=0)
selected_indices = selected_indices[torch.randperm(len(selected_indices))].unbind(dim=1)
proposal_bboxes = proposal_bboxes[selected_indices]
gt_bboxes = gt_bboxes_batch[selected_indices[0], proposal_assignments[selected_indices]]
gt_proposal_classes = labels[selected_indices]
gt_proposal_transformers = BBox.calc_transformer(proposal_bboxes, gt_bboxes)
batch_indices = selected_indices[0]
pool = Pooler.apply(features, proposal_bboxes, proposal_batch_indices=batch_indices, mode=self._pooler_mode)
hidden = self.hidden(pool)
hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
hidden = hidden.view(hidden.shape[0], -1)
proposal_classes = self._proposal_class(hidden)
proposal_transformers = self._proposal_transformer(hidden)
proposal_class_losses, proposal_transformer_losses = self.loss(proposal_classes, proposal_transformers,
gt_proposal_classes, gt_proposal_transformers,
batch_size, batch_indices)
return proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses
def loss(self, proposal_classes: Tensor, proposal_transformers: Tensor,
gt_proposal_classes: Tensor, gt_proposal_transformers: Tensor,
batch_size, batch_indices) -> Tuple[Tensor, Tensor]:
proposal_transformers = proposal_transformers.view(-1, self.num_classes, 4)[torch.arange(end=len(proposal_transformers), dtype=torch.long), gt_proposal_classes]
transformer_normalize_mean = self._transformer_normalize_mean.to(device=gt_proposal_transformers.device)
transformer_normalize_std = self._transformer_normalize_std.to(device=gt_proposal_transformers.device)
gt_proposal_transformers = (gt_proposal_transformers - transformer_normalize_mean) / transformer_normalize_std # scale up target to make regressor easier to learn
cross_entropies = torch.empty(batch_size, dtype=torch.float, device=proposal_classes.device)
smooth_l1_losses = torch.empty(batch_size, dtype=torch.float, device=proposal_transformers.device)
for batch_index in range(batch_size):
selected_indices = (batch_indices == batch_index).nonzero().view(-1)
cross_entropy = F.cross_entropy(input=proposal_classes[selected_indices],
target=gt_proposal_classes[selected_indices])
fg_indices = gt_proposal_classes[selected_indices].nonzero().view(-1)
smooth_l1_loss = beta_smooth_l1_loss(input=proposal_transformers[selected_indices][fg_indices],
target=gt_proposal_transformers[selected_indices][fg_indices],
beta=self._proposal_smooth_l1_loss_beta)
cross_entropies[batch_index] = cross_entropy
smooth_l1_losses[batch_index] = smooth_l1_loss
return cross_entropies, smooth_l1_losses
def generate_detections(self, proposal_bboxes: Tensor, proposal_classes: Tensor, proposal_transformers: Tensor, image_width: int, image_height: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
batch_size = proposal_bboxes.shape[0]
proposal_transformers = proposal_transformers.view(batch_size, -1, self.num_classes, 4)
transformer_normalize_std = self._transformer_normalize_std.to(device=proposal_transformers.device)
transformer_normalize_mean = self._transformer_normalize_mean.to(device=proposal_transformers.device)
proposal_transformers = proposal_transformers * transformer_normalize_std + transformer_normalize_mean
proposal_bboxes = proposal_bboxes.unsqueeze(dim=2).repeat(1, 1, self.num_classes, 1)
detection_bboxes = BBox.apply_transformer(proposal_bboxes, proposal_transformers)
detection_bboxes = BBox.clip(detection_bboxes, left=0, top=0, right=image_width, bottom=image_height)
detection_probs = F.softmax(proposal_classes, dim=-1)
all_detection_bboxes = []
all_detection_classes = []
all_detection_probs = []
all_detection_batch_indices = []
for batch_index in range(batch_size):
for c in range(1, self.num_classes):
class_bboxes = detection_bboxes[batch_index, :, c, :]
class_probs = detection_probs[batch_index, :, c]
threshold = 0.3
kept_indices = nms(class_bboxes, class_probs, threshold)
class_bboxes = class_bboxes[kept_indices]
class_probs = class_probs[kept_indices]
all_detection_bboxes.append(class_bboxes)
all_detection_classes.append(torch.full((len(kept_indices),), c, dtype=torch.int))
all_detection_probs.append(class_probs)
all_detection_batch_indices.append(torch.full((len(kept_indices),), batch_index, dtype=torch.long))
all_detection_bboxes = torch.cat(all_detection_bboxes, dim=0)
all_detection_classes = torch.cat(all_detection_classes, dim=0)
all_detection_probs = torch.cat(all_detection_probs, dim=0)
all_detection_batch_indices = torch.cat(all_detection_batch_indices, dim=0)
return all_detection_bboxes, all_detection_classes, all_detection_probs, all_detection_batch_indices