-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptronsGeneric.js
245 lines (196 loc) · 4.5 KB
/
perceptronsGeneric.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Simple Perceptrons Using p5.js
const LEARNING_RATE = 0.002; // keeping it low for interesting and long lasting visualization
const NUMBER_OF_WEIGHTS = 3; // x,y and bias
var NUMBER_OF_POINTS = 500; // number of points to train
function Perceptrons()
{
this.weights = randomWeights();
this.guess = function(inputs)
{
var sum = 0;
for(var j = 0;j<this.weights.length;j++)
{
sum += this.weights[j] * inputs[j];
}
var out = activation(sum);
return out;
}
// Activation function
function activation(number)
{
if(number >= 0)
return 1;
else {
return -1;
}
}
// trains a point
this.train = function(inputs,target)
{
var guess = this.guess(inputs);
var error = target - guess;
// adjusting weights
for(var p=0;p<this.weights.length;p++)
{
this.weights[p] += error * inputs[p] * LEARNING_RATE;
}
}
this.guessY = function(x)
{
var w0 = this.weights[0];
var w1 = this.weights[1];
var w2 = this.weights[2];
return -(w2/w1) - ((w0/w1) * x);
}
}
// initialize with random weights
function randomWeights()
{
var weights = new Array(NUMBER_OF_WEIGHTS);
// Assigning random weights
for(var i=0;i<weights.length;i++)
{
// returns integers between -1 and 1 (inclusive)
weights[i] = Math.round((Math.random() * (1-(-1))) - 1);
}
return weights;
}
// subjects for training
function Point()
{
this.x = (Math.random() * (1-(-1))) - 1;
this.y = (Math.random() * (1-(-1))) - 1;
this.bias = 1; // bias
this.label = function()
{
var lineY = lineEqn(this.x);
if(this.y > lineY)
return 1;
else
return -1;
}
this.pixelX = function()
{
return map(this.x,-1,1,0,width);
}
this.pixelY = function()
{
return map(this.y,-1,1,height,0);
}
// display the points
this.show = function()
{
if(this.label() == 1)
fill(255);
else {
fill(0);
}
var px = this.pixelX();
var py = this.pixelY();
ellipse(px,py,10,10);
}
}
// had to make this because JS doesn't support constructor overloading
function Point2(x,y)
{
this.x = x;
this.y = y;
this.bias = 1;
this.pixelX = function()
{
return map(this.x,-1,1,0,width);
}
this.pixelY = function()
{
return map(this.y,-1,1,height,0);
}
}
// represents generic line equation
// y = mx + c
function lineEqn(x)
{
return 2 * x - 0.1;
}
var points = new Array(NUMBER_OF_POINTS);
var perceptronBrain;
function setup(){
createCanvas(600,600);
perceptronBrain = new Perceptrons();
// create points
for(var i = 0;i<points.length;i++)
{
points[i] = new Point();
}
}
var trainIndex = 0;
function draw()
{
background(135,206,250);
stroke(0);
strokeWeight(3);
// dividing line
var p1 = new Point2(-1,lineEqn(-1));
var p2 = new Point2(1,lineEqn(1));
line(p1.pixelX(),p1.pixelY(),p2.pixelX(),p2.pixelY());
stroke(255,255,0);
strokeWeight(2);
// line representing what the algo has learned so far
var p3 = new Point2(-1,perceptronBrain.guessY(-1));
var p4 = new Point2(1,perceptronBrain.guessY(1));
line(p3.pixelX(),p3.pixelY(),p4.pixelX(),p4.pixelY());
noStroke();
// draws the original points
drawPoints(points);
drawTrainedPoints(points);
// Trains one point at a time
trainPointByPoint(points,trainIndex);
trainIndex++;
// Once it has trained all the points we start again
if(trainIndex == points.length)
{ trainIndex = 0;
}
}
function drawPoints(points)
{
for(var x = 0;x < points.length;x++)
{
points[x].show();
}
}
function drawTrainedPoints(points)
{
for(var k = 0;k < points.length;k++)
{
var currentPoint = points[k];
var inputs = [currentPoint.x,currentPoint.y,currentPoint.bias];
var target = currentPoint.label();
var guess = perceptronBrain.guess(inputs);
if(guess == target)
{
fill(0,255,0);
}
else {
fill(255,0,0);
}
noStroke();
ellipse(currentPoint.pixelX(),currentPoint.pixelY(),5,5);
}
}
function trainPointByPoint(points,trainIndex)
{
var trainPoint = points[trainIndex];
var inputs = [trainPoint.x,trainPoint.y,trainPoint.bias];
var target = trainPoint.label();
perceptronBrain.train(inputs,target);
}
// train points using MousePress (extra)
// function mousePressed()
// {
// for(var k = 0;k < points.length;k++)
// {
// var currentPoint = points[k];
// var inputs = [currentPoint.x,currentPoint.y,currentPoint.z];
// var target = currentPoint.label();
// perceptronBrain.train(inputs, target);
// }
// }