-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
92 lines (79 loc) · 2.63 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import numpy as np
import pdb
def files_in_target_folder(path, extension=".opus"):
# obtain all file paths in the target folder
res_files=[]
for file in os.listdir(path):
if file.endswith(extension):
res_files.append(file)
return res_files
def get_all_sub_folders(path):
first_level_folders = [x[0] for x in os.walk(path)]
for first in first_level_folders:
second_level_folders = [f"{first}/" + x[0] for x in os.walk(first)]
return second_level_folders
def stereoToMono(audiodata):
'turn 2d array to 1d'
return np.array(audiodata[:, 0] / 2 + audiodata[:, 1] / 2)
def interval_to_info(interval_seq):
res = []
start = 0
in_interval = False
for (index, label) in zip(range(len(interval_seq)), interval_seq):
if label >= 1 and not in_interval:
res.append(np.asarray([start, index]))
in_interval = True
if label == 0 and in_interval:
start = index
in_interval = False
if not in_interval:
res.append(np.asarray([start, len(interval_seq)]))
return np.asarray(res), Dur_info(np.asarray(res), len(interval_seq))
def Dur_info(current_interval_info, whole_length):
during_turn_interval = []
for index in range(len(current_interval_info)):
if index == 0:
continue
if current_interval_info[index][0] == current_interval_info[index][1]:
continue
during_turn_interval.append(np.asarray([current_interval_info[index-1][1], current_interval_info[index][0]]))
if current_interval_info[-1][1] != whole_length:
'In case it ends with an interval'
during_turn_interval.append(np.asarray([current_interval_info[-1][1], whole_length]))
return during_turn_interval
def rolling_window(array, window):
'Obtain the stddev of the array'
half_window_size = window//2
res = []
for index in range(len(array)):
current_slice = array[max(index - half_window_size, 0):min(index + half_window_size, len(array))]
res.append(np.std(current_slice))
return np.asarray(res)
def front_clip(array, threshold):
'clip std array from front'
for i in range(len(array)):
if array[i] < threshold:
pass
else:
return True, i
return False, -1
def end_clip(array, threshold):
'clip std array from end'
for i in range(len(array)):
if array[~i] < threshold:
pass
else:
return True, i
return False, -1
def create_folders(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def save_data_array_as_npy(input_array, file_name):
np.save(file_name, input_array)
def load_data_array_from_npy(file_name):
return np.load(file_name, allow_pickle=True)
def return_download_dict(read_in_name = "file_name_dict.npy"):
return load_data_array_from_npy(read_in_name)
if __name__ == '__main__':
print(return_download_dict())