-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig_validator.py
479 lines (405 loc) · 14.5 KB
/
config_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import common
import dp_utils
from shuffler.proto import task_builder_pb2
def validate_metadata(
task_config: task_builder_pb2.TaskConfig,
) -> task_builder_pb2.TaskMode.Enum:
"""Perform validations on task config, such as check on bad value.
Args:
task_config: the adopter-provided task configurations.
Returns:
The task mode if `task_config` is valid.
Raises:
TaskBuilderException: if any validation check fails.
"""
# Population name must be set to a non-empty string
_validate_non_empty_string(
key_name='population_name',
value=task_config.population_name,
entity_name='task_config',
)
# Validate `policies` setup
_validate_policy_setup(task_config.policies)
# Validate `federated_learning` setup
_validate_federated_learning_setup(
task_mode=task_config.mode, fl_setup=task_config.federated_learning
)
# Validate `differential_privacy` setup
_validate_differential_privacy_setup(task_config.differential_privacy)
return task_config.mode
def validate_fcp_dp(
task_config: task_builder_pb2.TaskConfig,
flags: task_builder_pb2.ExperimentFlags,
) -> common.DpParameter:
"""Prepare DP parameters and validate DP accounting for training task.
Args:
task_config: the adopter-provided task configurations.
Returns:
DP parameters that build dp-noised learning process.
Raises:
TaskBuilderException: if the DP accounting validation fails.
"""
training_report_goal = (
task_config.federated_learning.learning_process.runtime_config.report_goal
)
dp_setup = task_config.differential_privacy
model_release_policy = task_config.policies.model_release_policy
dp_clip_norm = dp_setup.clip_norm
dp_init_clip_norm = dp_setup.init_clip_norm
noise_multiplier = dp_setup.noise_multiplier
dp_aggregator_type = dp_setup.type
if not dp_aggregator_type:
dp_aggregator_type = task_builder_pb2.DpAggregator.FIXED_GAUSSIAN
logging.info(f'`dp_aggregator_type` is set to default FIXED_GAUSSIAN')
if (
not dp_init_clip_norm
and dp_aggregator_type in common.ADAPTIVE_DP_AGGREGATORS
):
dp_init_clip_norm = common.DEFAULT_INIT_CLIP_NORM
logging.info(
f'`dp_init_clip_norm` is set to default value: {dp_init_clip_norm}'
)
dp_target_epsilon = model_release_policy.dp_target_epsilon
dp_delta = model_release_policy.dp_delta
if not dp_delta:
dp_delta = common.DEFAULT_DP_DELTA
logging.info(f'`dp_delta` is set to default value: {dp_delta}')
if not dp_target_epsilon:
dp_target_epsilon = common.DEFAULT_DP_EPSILON
logging.info(
f'`dp_target_epsilon` is set to default value: {dp_target_epsilon}'
)
num_training_rounds = model_release_policy.num_max_training_rounds
# calibrate noise if not provided
dp_epsilon = dp_target_epsilon
if not noise_multiplier:
noise_multiplier = dp_utils.epsilon_to_noise(
report_goal=training_report_goal,
num_training_rounds=num_training_rounds,
dp_delta=dp_delta,
dp_epsilon=dp_epsilon,
dp_aggregator_type=dp_aggregator_type,
)
else:
dp_epsilon = dp_utils.noise_to_epsilon(
report_goal=training_report_goal,
num_training_rounds=num_training_rounds,
dp_delta=dp_delta,
noise_multiplier=noise_multiplier,
dp_aggregator_type=dp_aggregator_type,
)
if not flags.skip_dp_check and dp_epsilon > dp_target_epsilon:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.DP_ACCOUNTING_CHECK_ERROR_MSG
)
# DP configs for building learning process
dp_parameters = common.DpParameter(
dp_delta=dp_delta,
dp_epsilon=dp_epsilon,
noise_multiplier=noise_multiplier,
dp_clip_norm=dp_clip_norm
if dp_aggregator_type in common.FIXED_DP_AGGREGATORS
else dp_init_clip_norm,
num_training_rounds=num_training_rounds,
dp_aggregator_type=dp_aggregator_type,
)
logging.info(dp_parameters)
return dp_parameters
def _validate_policy_setup(policy_setup: task_builder_pb2.Policies):
"""Perform validations on policies, such as check on bad value.
Args:
policy_setup: the `Policies` setup from task configurations.
Raises:
TaskBuilderException: if any validation check fails.
"""
# minimum separation
_validate_nonnegative_number(
key_name='minimum_separation',
number=policy_setup.min_separation_policy.minimum_separation,
entity_name='min_separation_policy',
)
# minimum example count
_validate_nonnegative_number(
key_name='min_example_count',
number=policy_setup.data_availability_policy.min_example_count,
entity_name='data_availability_policy',
)
model_release_policy = policy_setup.model_release_policy
# dp target epsilon
_validate_dp_target_epsilon(model_release_policy.dp_target_epsilon)
# dp delta
_validate_dp_delta(model_release_policy.dp_delta)
# number of training rounds
_validate_nonnegative_number(
key_name='num_max_training_rounds',
number=model_release_policy.num_max_training_rounds,
entity_name='model_release_policy',
)
# dataset preprocessing policies
dataset_policy = policy_setup.dataset_policy
_validate_nonnegative_number(
key_name='batch_size',
number=dataset_policy.batch_size,
entity_name='dataset_policy',
)
def _validate_federated_learning_setup(
task_mode: task_builder_pb2.TaskMode.Enum,
fl_setup: task_builder_pb2.FederatedLearning,
):
"""Perform validations on federated learning, such as check on bad value.
Args:
fl_setup: the `FederatedLearning` setup from task configurations.
Returns:
The task mode if `fl_setup` is valid.
Raises:
TaskBuilderException: if any validation check fails.
"""
learning_process = fl_setup.learning_process
# client learning rate
_validate_probability(
key_name='client_learning_rate',
number=learning_process.client_learning_rate,
entity_name='learning_process',
)
# server learning rate
_validate_probability(
key_name='server_learning_rate',
number=learning_process.server_learning_rate,
entity_name='learning_process',
)
# training task reporting goal
_validate_report_goal(
report_goal=learning_process.runtime_config.report_goal,
entity_name='runtime_config',
)
# training over selection rate
_validate_nonnegative_number(
key_name='over_selection_rate',
number=learning_process.runtime_config.over_selection_rate,
entity_name='runtime_config',
)
# check evaluation info
if task_mode != task_builder_pb2.TaskMode.Enum.TRAINING_ONLY:
evaluation_info = fl_setup.evaluation
# eval task reporting goal
_validate_report_goal(
report_goal=evaluation_info.report_goal, entity_name='evaluation'
)
# eval over selection rate
_validate_nonnegative_number(
key_name='over_selection_rate',
number=evaluation_info.over_selection_rate,
entity_name='evaluation',
)
# checkpoint selector
_validate_checkpoint_selector(evaluation_info.checkpoint_selector)
# evaluation traffic
_validate_probability(
key_name='evaluation_traffic',
number=evaluation_info.evaluation_traffic,
entity_name='evaluation',
)
# source training task id
_validate_positive_number(
key_name='source_training_task_id',
number=evaluation_info.source_training_task_id,
entity_name='evaluation',
)
def _validate_differential_privacy_setup(
dp_setup: task_builder_pb2.DifferentialPrivacy,
):
"""Perform validations on differential privacy, such as check on bad value.
Args:
dp_setup: the `DifferentialPrivacy` setup from task configurations.
Raises:
TaskBuilderException: if any validation check fails.
"""
_validate_nonnegative_number(
key_name='noise_multiplier',
number=dp_setup.noise_multiplier,
entity_name='differential_privacy',
)
_validate_clip_norm(dp_setup)
def _validate_clip_norm(dp_setup: task_builder_pb2.DifferentialPrivacy):
dp_aggregator_type = dp_setup.type
if (
dp_aggregator_type in common.FIXED_DP_AGGREGATORS
or not dp_aggregator_type
):
if dp_setup.clip_norm <= 0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='clip_norm',
value=dp_setup.clip_norm,
entity_name='differential_privacy',
debug_msg=(
f'clip_norm is required and must be a positive float '
f'when using FIXED_GAUSSIAN or TREE_AGGREGATION '
f'DP Aggregator.'
),
)
)
elif dp_aggregator_type in common.ADAPTIVE_DP_AGGREGATORS:
if dp_setup.init_clip_norm < 0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='init_clip_norm',
value=dp_setup.init_clip_norm,
entity_name='differential_privacy',
debug_msg=(
f'init_clip_norm must be a positive float or be left empty'
f' when using ADAPTIVE_GAUSSIAN or ADAPTIVE_TREE '
f'DP Aggregator.'
),
)
)
def _validate_nonnegative_number(
key_name: str, number: int | float, entity_name: str
):
"""Validate the value of `key_name` is a nonnegative number."""
if number < 0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name=key_name,
value=number,
entity_name=entity_name,
debug_msg=key_name + ' must be a nonnegative number.',
)
)
def _validate_positive_number(
key_name: str, number: int | float, entity_name: str
):
"""Validate the value of `key_name` is a positive number."""
if number <= 0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name=key_name,
value=number,
entity_name=entity_name,
debug_msg=key_name + ' is required and must be a positive number.',
)
)
def _validate_dp_delta(dp_delta: float):
"""Validate the value of `dp_delta` is in legitimate range.
Since user-level DP is enforced, `dp_delta` must be a probability
less than `1/n`, where `n` is the number of estimated total devices.
We set `n` to 10000 by default.
Args:
dp_delta: the value of DP delta.
"""
if dp_delta < 0.0 or dp_delta > common.DEFAULT_DP_DELTA:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='dp_delta',
value=dp_delta,
entity_name='model_release_policy',
debug_msg='dp_delta must be a float number between 0 and %E'
% common.DEFAULT_DP_DELTA,
)
)
def _validate_dp_target_epsilon(dp_target_epsilon: float):
"""Validate the value of `dp_target_epsilon` is in legitimate range.
Range: (0.0, 6.0), where 6.0 is the system-provided target epsilon
Args:
dp_target_epsilon: the value of DP targeting epsilon.
"""
if dp_target_epsilon < 0.0 or dp_target_epsilon > common.DEFAULT_DP_EPSILON:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='dp_target_epsilon',
value=dp_target_epsilon,
entity_name='model_release_policy',
debug_msg=(
'dp_target_epsilon must be a float number between 0 and %f'
% common.DEFAULT_DP_EPSILON
),
)
)
def _validate_probability(key_name: str, number: float, entity_name: str):
"""Validate the value of `key_name` is a probability (float number from 0.0
to 1.0).
"""
if number < 0.0 or number > 1.0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name=key_name,
value=number,
entity_name=entity_name,
debug_msg=key_name + ' must be a probability.',
)
)
def _validate_checkpoint_selector(checkpoint_selector: str):
"""Validate the value of `checkpoint_selector` is correctly formatted as
`every_k_{round|hour}`.
"""
if not checkpoint_selector:
return
values = checkpoint_selector.split('_')
if (
len(values) == 3
and values[0] == 'every'
and values[2] in ['round', 'hour']
):
k = values[1]
if k.isnumeric():
return
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='checkpoint_selector',
value=checkpoint_selector,
entity_name='evaluation',
debug_msg=(
'checkpoint_selector must be in the format of every_k_round or'
' every_k_hour, where k is a positive integer.'
),
)
)
def _validate_non_empty_string(key_name: str, value: str, entity_name: str):
if not value:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name=key_name,
value=value,
entity_name=entity_name,
debug_msg=key_name
+ ' is required and must be set to an non-empty string.',
)
)
def _validate_report_goal(report_goal: int, entity_name: str):
if report_goal <= 0:
raise common.TaskBuilderException(
common.CONFIG_VALIDATOR_ERROR_PREFIX
+ common.BAD_VALUE_ERROR_MSG.format(
key_name='report_goal',
value=report_goal,
entity_name=entity_name,
debug_msg=(
'report_goal is required and must be set to an integer strictly'
' greater than zero.'
),
)
)