-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdp_utils.py
102 lines (93 loc) · 3.3 KB
/
dp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import common
from dp_accounting import dp_event
from dp_accounting import mechanism_calibration
from dp_accounting import pld
from dp_accounting import privacy_accountant
from dp_accounting import rdp
from shuffler.proto import task_builder_pb2
def noise_to_epsilon(
report_goal: int,
num_training_rounds: int,
dp_delta: float,
noise_multiplier: float,
dp_aggregator_type: task_builder_pb2.DpAggregator.Enum,
) -> float:
"""Calculate DP epsilon given a noise multiplier."""
event = _make_dp_event(
noise_multiplier, report_goal, num_training_rounds, dp_aggregator_type
)
accountant = _make_dp_accountant(dp_aggregator_type)
accountant.compose(event)
return accountant.get_epsilon(dp_delta)
def epsilon_to_noise(
report_goal: int,
num_training_rounds: int,
dp_delta: float,
dp_epsilon: float,
dp_aggregator_type: task_builder_pb2.DpAggregator.Enum,
) -> float:
"""Calibrate the minimal noise that guarantees the provided privacy budget."""
make_event = functools.partial(
_make_dp_event,
report_goal=report_goal,
num_training_rounds=num_training_rounds,
dp_aggregator_type=dp_aggregator_type,
)
dp_accountant = functools.partial(
_make_dp_accountant, dp_aggregator_type=dp_aggregator_type
)
return mechanism_calibration.calibrate_dp_mechanism(
make_fresh_accountant=dp_accountant,
make_event_from_param=make_event,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
)
def _make_dp_event(
noise: float,
report_goal: int,
num_training_rounds: int,
dp_aggregator_type: task_builder_pb2.DpAggregator.Enum,
) -> dp_event.DpEvent:
if num_training_rounds == 0:
return dp_event.NoOpDpEvent()
if (
dp_aggregator_type == task_builder_pb2.DpAggregator.TREE_AGGREGATION
or dp_aggregator_type == task_builder_pb2.DpAggregator.ADAPTIVE_TREE
):
# report_goal is not needed for SingleEpochTreeAggregationDpEvent
return dp_event.SingleEpochTreeAggregationDpEvent(
noise, [num_training_rounds]
)
else:
sampling_probability = report_goal / common.DEFAULT_TOTAL_POPULATION
return dp_event.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent(
sampling_probability, dp_event.GaussianDpEvent(noise)
),
num_training_rounds,
)
def _make_dp_accountant(
dp_aggregator_type: task_builder_pb2.DpAggregator.Enum,
) -> privacy_accountant.PrivacyAccountant:
if (
dp_aggregator_type == task_builder_pb2.DpAggregator.TREE_AGGREGATION
or dp_aggregator_type == task_builder_pb2.DpAggregator.ADAPTIVE_TREE
):
return rdp.RdpAccountant(
neighboring_relation=privacy_accountant.NeighboringRelation.REPLACE_SPECIAL
)
return pld.PLDAccountant()