-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample_model.py
62 lines (52 loc) · 2.11 KB
/
example_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A binary classification NLP keras model using pre-computed embeddings.
_________________________________________________________________
=================================================================
Layer (type) Output Shape Param #
first_dense_layer (Dense) multiple 262400
second_dense_layer (Dense) multiple 514
softmax (Softmax) multiple 0
Total params: 262914 (1.00 MB)
Trainable params: 262914 (1.00 MB)
Non-trainable params: 0 (0.00 Byte)
=================================================================
"""
import tensorflow as tf
_INPUT_DIM = 784
_FIRST_DENSE_LAYER_DIM = 256
_SECOND_DENSE_LAYER_DIM = 2
class ExampleKerasModel(tf.keras.Model):
"""A binary classification NLP model using pre-computed embeddings."""
def __init__(self):
super().__init__()
self.dense1_layer = tf.keras.layers.Dense(
_FIRST_DENSE_LAYER_DIM, activation=tf.nn.relu, name='first_dense_layer'
)
self.dense2_layer = tf.keras.layers.Dense(
units=_SECOND_DENSE_LAYER_DIM,
activation=tf.nn.sigmoid,
name='second_dense_layer',
)
self.probability_layer = tf.keras.layers.Softmax()
# We explicitly create model variables by calling self#build here to ensure
# all necessary information is defined before constructing the federated
# functional model
self.build(tf.TensorShape([None, _INPUT_DIM]))
# NOMUTANTS -- used for logging
self.summary()
def call(self, inputs, training=None, mask=None):
x = self.dense1_layer(inputs)
x = self.dense2_layer(x)
return self.probability_layer(x)[:, 0]