-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlearning_process_utils.py
270 lines (241 loc) · 9.75 KB
/
learning_process_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import common
import metrics_utils
from shuffler.proto import task_builder_pb2
import tensorflow as tf
import tensorflow_federated as tff
def compose_iterative_processes(
model: tff.learning.models.FunctionalModel,
learning_process: task_builder_pb2.LearningProcess,
dp_parameters: common.DpParameter,
training_and_eval: bool,
eval_only: bool,
flags: task_builder_pb2.ExperimentFlags,
task_report: task_builder_pb2.TaskReport,
) -> Tuple[
Optional[tff.templates.IterativeProcess],
Optional[tff.templates.IterativeProcess],
task_builder_pb2.TaskReport,
]:
"""Composes the training iterative process and the evaluation iterative process.
Args:
model: A 'tff.learning.models.FunctionalModel' model.
learning_process: The learning process setups from the configuration.
dp_parameters: The DP setups from the configuration and preprocessing.
training_and_eval: If generating both training learning process and
evaluation learning process together.
eval_only: If generating the evaluation learning process only.
Returns: A tuple of (training learning process, evaluation learning
process, task report).
"""
# Unpack configurations and set default if not provided
learning_algo = (
learning_process.type or task_builder_pb2.LearningAlgo.Enum.FED_AVG
)
client_optimizer = (
learning_process.client_optimizer or task_builder_pb2.Optimizer.Enum.SGD
)
server_optimizer = (
learning_process.server_optimizer or task_builder_pb2.Optimizer.Enum.SGD
)
client_learning_rate = learning_process.client_learning_rate or 0.1
server_learning_rate = learning_process.server_learning_rate or 1.0
training_report_goal = learning_process.runtime_config.report_goal
task_report.applied_algorithms.client_optimizer = client_optimizer
task_report.applied_algorithms.server_optimizer = server_optimizer
task_report.applied_algorithms.learning_algo = learning_algo
metrics = learning_process.metrics
# Find accepted and rejected metrics
metric_outcomes = metrics_utils.metric_outcomes(metrics)
metric_results = task_builder_pb2.TaskReport.MetricResults(
accepted_metrics=", ".join(metric_outcomes["accepted_metrics"]).lstrip(),
rejected_metrics=", ".join(metric_outcomes["rejected_metrics"]).lstrip(),
)
task_report.metric_results.CopyFrom(metric_results)
# Add metrics into model.
model = _compose_model_with_metrics(
model, metric_outcomes["accepted_metrics"]
)
def compose_eval_iterative_process(
training_iterative_process: tff.templates.IterativeProcess,
) -> tff.templates.IterativeProcess:
get_model_weights_computation = training_iterative_process.get_model_weights
state_type = get_model_weights_computation.type_signature.parameter
evaluation_computation = tff.learning.build_federated_evaluation(
model_fn=model
)
batch_type = evaluation_computation.type_signature.parameter[1]
@tff.tf_computation
def create_all_zero_state():
return tff.types.structure_from_tensor_type_tree(
lambda t: tf.zeros(shape=t.shape, dtype=t.dtype), state_type
)
@tff.federated_computation
def initialize():
return tff.federated_eval(create_all_zero_state, tff.SERVER)
@tff.tf_computation(state_type)
def get_flatted_model_weights_computation(state):
# Switch to the tuple expected by evaluation_computation.
model_weights = get_model_weights_computation(state)
return (model_weights.trainable, model_weights.non_trainable)
@tff.federated_computation(
tff.FederatedType(state_type, tff.SERVER), batch_type
)
def eval_next(state, data):
model_weights = tff.federated_map(
get_flatted_model_weights_computation, state
)
raw_metrics = evaluation_computation(model_weights, data)
if isinstance(raw_metrics.type_signature, tff.StructType):
metrics = tff.federated_zip(raw_metrics)
else:
metrics = raw_metrics
return state, metrics
return tff.templates.IterativeProcess(initialize, eval_next)
# Construct TFF optimizers
tff_client_optimizer = _get_optimizer(
optimizer_type=client_optimizer, learning_rate=client_learning_rate
)
tff_server_optimizer = _get_optimizer(
optimizer_type=server_optimizer, learning_rate=server_learning_rate
)
# Inject DP parameters to the learning process.
dp_aggregator = None
if not flags.skip_dp_aggregator:
task_report.applied_algorithms.dp_aggregator = (
dp_parameters.dp_aggregator_type
)
dp_aggregator = _get_dp_aggregator(
model, dp_parameters, training_report_goal
)
def compose_training_iterative_process() -> tff.templates.IterativeProcess:
if learning_algo == task_builder_pb2.LearningAlgo.Enum.FED_SGD:
return tff.learning.algorithms.build_fed_sgd(
model_fn=model,
server_optimizer_fn=tff_server_optimizer,
model_aggregator=dp_aggregator,
)
return tff.learning.algorithms.build_unweighted_fed_avg(
model_fn=model,
client_optimizer_fn=tff_client_optimizer,
server_optimizer_fn=tff_server_optimizer,
model_aggregator=dp_aggregator,
)
training_iterative_process = compose_training_iterative_process()
if eval_only:
return (
None,
compose_eval_iterative_process(training_iterative_process),
task_report,
)
elif training_and_eval:
return (
training_iterative_process,
compose_eval_iterative_process(training_iterative_process),
task_report,
)
else:
return training_iterative_process, None, task_report
def _get_optimizer(
optimizer_type: task_builder_pb2.Optimizer.Enum, learning_rate: float
) -> tff.learning.optimizers.Optimizer:
if optimizer_type == task_builder_pb2.Optimizer.Enum.ADAM:
return tff.learning.optimizers.build_adam(
learning_rate=learning_rate,
)
# Support SGD optimizer by default.
return tff.learning.optimizers.build_sgdm(learning_rate=learning_rate)
def _compose_model_with_metrics(
model: tff.learning.models.FunctionalModel,
metrics: list[str],
) -> tff.learning.models.FunctionalModel:
metrics_constructors = metrics_utils.build_metric_constructors_list(
allowed_metric_names=metrics
)
(
model.initialize_metrics_state,
model.update_metrics_state,
model.finalize_metrics,
) = metrics_utils.create_metrics_fns(metric_constructors=metrics_constructors)
return model
def _get_dp_aggregator(
model: tff.learning.models.FunctionalModel,
dp_parameters: common.DpParameter,
training_report_goal: int,
) -> tff.aggregators.UnweightedAggregationFactory:
if (
dp_parameters.dp_aggregator_type
== task_builder_pb2.DpAggregator.TREE_AGGREGATION
):
# For DP-FTRL, replace client updates with L-infinity norm greater than this
# value times the clip norm with a zero update.
# In https://arxiv.org/abs/2211.06530, setting this to 100
# increased stability and allowed a larger server learning rate.
zeroing_multiplier = 100.0
trainable_weights, _ = model.initial_weights
record_specs = tf.nest.map_structure(
lambda weight: tf.TensorSpec(shape=weight.shape, dtype=weight.dtype),
trainable_weights,
)
dp_aggregator = (
tff.aggregators.DifferentiallyPrivateFactory.tree_aggregation(
noise_multiplier=dp_parameters.noise_multiplier,
l2_norm_clip=dp_parameters.dp_clip_norm,
record_specs=record_specs,
clients_per_round=training_report_goal,
)
)
return tff.aggregators.zeroing_factory(
zeroing_multiplier * dp_parameters.dp_clip_norm, dp_aggregator
)
elif (
dp_parameters.dp_aggregator_type
== task_builder_pb2.DpAggregator.ADAPTIVE_GAUSSIAN
):
return tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive(
noise_multiplier=dp_parameters.noise_multiplier,
clients_per_round=training_report_goal,
initial_l2_norm_clip=dp_parameters.dp_clip_norm,
)
elif (
dp_parameters.dp_aggregator_type
== task_builder_pb2.DpAggregator.ADAPTIVE_TREE
):
# For DP-FTRL, replace client updates with L-infinity norm greater than this
# value times the clip norm with a zero update.
# In https://arxiv.org/abs/2211.06530, setting this to 100
# increased stability and allowed a larger server learning rate.
zeroing_multiplier = 100.0
trainable_weights, _ = model.initial_weights
record_specs = tf.nest.map_structure(
lambda weight: tf.TensorSpec(shape=weight.shape, dtype=weight.dtype),
trainable_weights,
)
dp_aggregator = tff.aggregators.DifferentiallyPrivateFactory.tree_adaptive(
noise_multiplier=dp_parameters.noise_multiplier,
clients_per_round=training_report_goal,
record_specs=record_specs,
initial_l2_norm_clip=dp_parameters.dp_clip_norm,
)
return tff.aggregators.zeroing_factory(
zeroing_multiplier * dp_parameters.dp_clip_norm, dp_aggregator
)
else:
return tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed(
noise_multiplier=dp_parameters.noise_multiplier,
clip=dp_parameters.dp_clip_norm,
clients_per_round=training_report_goal,
)