-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtask_builder_core.py
266 lines (250 loc) · 9.43 KB
/
task_builder_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Optional
import artifact_utils
import common
import config_validator
import dataset_utils
from google.cloud import storage
import http_utils
import io_utils
import learning_process_utils
from shuffler.proto import task_builder_pb2
from shuffler.proto import task_pb2
import task_utils
def build_task_group_request_handler(
build_task_request: common.BuildTaskRequest,
artifact_only: Optional[bool] = False,
) -> task_builder_pb2.BuildTaskResponse:
project_id = io_utils.get_gcp_project_id()
gcs_client = storage.Client(project=project_id)
model = build_task_request.model
task_config = build_task_request.task_config
flags = build_task_request.flags
task_report = task_builder_pb2.TaskReport()
population_name = task_config.population_name
is_training_and_eval = (
task_config.mode == task_builder_pb2.TaskMode.Enum.TRAINING_AND_EVAL
)
is_eval_only = task_config.mode == task_builder_pb2.TaskMode.Enum.EVAL_ONLY
use_daf = task_config.use_daf
logging.info(
'Successfully loaded input. Start building task group under population'
f' `{population_name}`...'
)
# Validate task config
try:
config_validator.validate_metadata(task_config=task_config)
logging.info(
'Basic config is valid. Start validating differential privacy setup...'
)
# DP accounting validation for training task
dp_parameters = config_validator.validate_fcp_dp(task_config, flags)
dp_parameters_proto = task_builder_pb2.TaskReport.DPHyperparameters(
dp_delta=dp_parameters.dp_delta,
dp_epsilon=dp_parameters.dp_epsilon,
noise_multiplier=dp_parameters.noise_multiplier,
dp_clip_norm=dp_parameters.dp_clip_norm,
num_training_rounds=dp_parameters.num_training_rounds,
)
task_report.dp_hyperparameters.CopyFrom(dp_parameters_proto)
logging.info('Task config is valid! Start building the task group.')
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.INVALID_REQUEST,
f'Task config is invalid: {str(e)}',
task_report=task_report,
)
# Compose learning algorithms based on `learning_process` config
try:
dataset_preprocessor = dataset_utils.compose_preprocessing_fn(
model=model,
dataset_policy=task_config.policies.dataset_policy,
label_name=task_config.label_name,
)
training_iterative_process, evaluation_iterative_process, task_report = (
learning_process_utils.compose_iterative_processes(
model=model,
learning_process=task_config.federated_learning.learning_process,
dp_parameters=dp_parameters,
training_and_eval=is_training_and_eval,
eval_only=is_eval_only,
flags=flags,
task_report=task_report,
)
)
except Exception as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.INVALID_REQUEST,
'Failed to build learning algorithm based on `learning_process`'
f' config: {str(e)}',
task_report=task_report,
)
if artifact_only:
main_task, optional_task = (
task_utils.create_tasks_for_artifact_only_request(
task_config=task_config
)
)
else:
main_task, optional_task = task_utils.create_tasks(task_config=task_config)
# Build artifacts for training and evaluation task if exists.
try:
main_data_spec, optional_data_spec = dataset_utils.get_data_specs(
task_config=task_config, preprocessing_fn=dataset_preprocessor
)
main_task_plan, main_task_client_plan, main_task_checkpoint = (
artifact_utils.build_artifacts(
task=main_task,
learning_process=evaluation_iterative_process
if is_eval_only
else training_iterative_process,
dataspec=main_data_spec,
use_daf=use_daf,
flags=flags,
)
)
logging.info(f'Build artifacts for task {main_task.task_id}.')
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.ARTIFACT_BUILDING_ERROR,
f'Artifact building failed for task {main_task.task_id}: {str(e)}. Stop'
' building remaining artifacts.',
task_report=task_report,
)
if is_training_and_eval:
try:
(
optional_task_plan,
optional_task_client_plan,
optional_task_checkpoint,
) = artifact_utils.build_artifacts(
task=optional_task,
learning_process=evaluation_iterative_process,
dataspec=optional_data_spec,
use_daf=use_daf,
flags=flags,
)
logging.info(f'Build artifacts for task {optional_task.task_id}.')
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.ARTIFACT_BUILDING_ERROR,
f'Artifact building failed for task {optional_task.task_id}:'
f' {str(e)}. Stop building remaining artifacts.',
task_report=task_report,
)
# Create tasks in TM if task configuration is valid and artifact only mode
# is disabled. If artifact only is enabled, only artifact URIs will be
# attached on empty tasks. The created tasks should be a tuple, where the
# second task is optional.
try:
if not artifact_only:
task_management_server = io_utils.get_task_management_server(
project_id=project_id
)
if not task_management_server:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.TASK_MANAGEMENT_ERROR,
'Cannot find task management server.',
task_report=task_report,
)
logging.info(
f'Connecting to task management server: {task_management_server}'
)
main_task, optional_task = http_utils.create_task_group(
tm_server=task_management_server, tasks=(main_task, optional_task)
)
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.TASK_MANAGEMENT_ERROR,
f'Failed to create tasks by task management service: {str(e)}',
task_report=task_report,
)
# build artifacts for the associated eval process, if exists
try:
artifact_utils.upload_artifacts(
task=main_task,
plan=main_task_plan,
client_plan=main_task_client_plan,
client=gcs_client,
checkpoint_bytes=main_task_checkpoint,
)
logging.info(f'Artifacts are uploaded for task {main_task.task_id}.')
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.ARTIFACT_BUILDING_ERROR,
f'Artifact failed to upload for task {main_task.task_id}:'
f' {str(e)}. Stop building remaining artifacts.',
task_report=task_report,
)
if is_training_and_eval:
try:
artifact_utils.upload_artifacts(
task=optional_task,
plan=optional_task_plan,
client_plan=optional_task_client_plan,
client=gcs_client,
checkpoint_bytes=optional_task_checkpoint,
)
logging.info(f'Artifacts are uploaded for task {optional_task.task_id}.')
except common.TaskBuilderException as e:
return _pack_task_builder_error(
task_builder_pb2.ErrorType.Enum.ARTIFACT_BUILDING_ERROR,
f'Artifact failed to upload for task {main_task.task_id}:'
f' {str(e)}. Stop building remaining artifacts.',
task_report=task_report,
)
return _pack_task_builder_success(
main_task=main_task,
optional_task=optional_task,
task_report=task_report,
is_eval_only=is_eval_only,
is_training_and_eval=is_training_and_eval,
)
def _pack_task_builder_error(
error_type: task_builder_pb2.ErrorType.Enum,
error_msg: str,
task_report: task_builder_pb2.TaskReport,
) -> task_builder_pb2.BuildTaskResponse:
return task_builder_pb2.BuildTaskResponse(
error_info=task_builder_pb2.ErrorInfo(
error_type=error_type,
error_message=error_msg,
),
task_report=task_report,
)
def _pack_task_builder_success(
main_task: task_pb2.Task,
optional_task: Optional[task_pb2.Task],
task_report: task_builder_pb2.TaskReport,
is_eval_only: Optional[bool] = False,
is_training_and_eval: Optional[bool] = False,
) -> task_builder_pb2.BuildTaskResponse:
if is_eval_only:
return task_builder_pb2.BuildTaskResponse(
task_group=task_builder_pb2.TaskGroup(eval_task=main_task),
task_report=task_report,
)
if is_training_and_eval:
return task_builder_pb2.BuildTaskResponse(
task_group=task_builder_pb2.TaskGroup(
training_task=main_task, eval_task=optional_task
),
task_report=task_report,
)
return task_builder_pb2.BuildTaskResponse(
task_group=task_builder_pb2.TaskGroup(training_task=main_task),
task_report=task_report,
)