-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_utils.py
102 lines (94 loc) · 3.71 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import common
import example_model
from shuffler.proto import common_pb2
from shuffler.proto import task_builder_pb2
import tensorflow as tf
import tensorflow_federated as tff
"""
Test utilities for building models and task configs.
"""
def _get_input_spec() -> Tuple[tf.TensorSpec, tf.TensorSpec]:
"""Builds the input spec for the example model."""
return (
tf.TensorSpec(shape=[None, 784], dtype=tf.float32),
tf.TensorSpec(shape=[None, 1], dtype=tf.int64),
)
def get_functional_model_without_metrics() -> (
tff.learning.models.FunctionalModel
):
return tff.learning.models.functional_model_from_keras(
keras_model=example_model.ExampleKerasModel(),
loss_fn=tf.keras.losses.BinaryCrossentropy(from_logits=False),
input_spec=_get_input_spec(),
)
def get_good_training_and_eval_task_config() -> task_builder_pb2.TaskConfig:
"""Builds a well-validated task config, which passes DP accounting check."""
return task_builder_pb2.TaskConfig(
mode=task_builder_pb2.TaskMode.Enum.TRAINING_AND_EVAL,
population_name='my_new_population',
label_name='y',
policies=task_builder_pb2.Policies(
min_separation_policy=common_pb2.MinimumSeparationPolicy(
minimum_separation=3
),
data_availability_policy=common_pb2.DataAvailabilityPolicy(
min_example_count=100
),
model_release_policy=task_builder_pb2.ModelReleaseManagementPolicy(
dp_target_epsilon=6,
dp_delta=0.000000001,
num_max_training_rounds=1000,
),
dataset_policy=task_builder_pb2.DatasetPolicy(
batch_size=3,
max_training_batches_per_client=100,
),
),
federated_learning=task_builder_pb2.FederatedLearning(
learning_process=task_builder_pb2.LearningProcess(
client_learning_rate=0.01,
server_learning_rate=1.0,
runtime_config=task_builder_pb2.RuntimeConfig(
report_goal=2000,
over_selection_rate=0.3,
example_selector_uri='training_collection',
),
artifact_building=task_builder_pb2.ArtifactBuilding(
plan_url=common.TEST_BLOB_PATH,
client_plan_url=common.TEST_BLOB_PATH,
checkpoint_url=common.TEST_BLOB_PATH,
),
),
evaluation=task_builder_pb2.Evaluation(
source_training_population='source_population',
checkpoint_selector='every_2_round',
evaluation_traffic=0.1,
report_goal=200,
over_selection_rate=0.3,
example_selector_uri='eval_collection',
artifact_building=task_builder_pb2.ArtifactBuilding(
plan_url=common.TEST_BLOB_PATH,
client_plan_url=common.TEST_BLOB_PATH,
checkpoint_url=common.TEST_BLOB_PATH,
),
source_training_task_id=1,
),
),
differential_privacy=task_builder_pb2.DifferentialPrivacy(
noise_multiplier=6.0, clip_norm=0.1
),
)