-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdataset_visualization.py
86 lines (66 loc) · 3.29 KB
/
dataset_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright (c) Prophesee S.A.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
"""
small executable to show the content of the Prophesee dataset
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import cv2
import argparse
from glob import glob
from src.visualize import vis_utils as vis
from src.io.psee_loader import PSEELoader
def play_files_parallel(td_files, labels=None, delta_t=50000, skip=0):
"""
Plays simultaneously files and their boxes in a rectangular format.
"""
# open the video object for the input files
videos = [PSEELoader(td_file) for td_file in td_files]
# use the naming pattern to find the corresponding box file
box_videos = [PSEELoader(glob(td_file.split('_td.dat')[0] + '*.npy')[0]) for td_file in td_files]
height, width = videos[0].get_size()
labelmap = vis.LABELMAP if height == 240 else vis.LABELMAP_LARGE
# optionally skip n minutes in all videos
for v in videos + box_videos:
v.seek_time(skip)
# preallocate a grid to display the images
size_x = int(math.ceil(math.sqrt(len(videos))))
size_y = int(math.ceil(len(videos) / size_x))
frame = np.zeros((size_y * height, width * size_x, 3), dtype=np.uint8)
cv2.namedWindow('out', cv2.WINDOW_NORMAL)
# while all videos have something to read
while not sum([video.done for video in videos]):
# load events and boxes from all files
events = [video.load_delta_t(delta_t) for video in videos]
box_events = [box_video.load_delta_t(delta_t) for box_video in box_videos]
for index, (evs, boxes) in enumerate(zip(events, box_events)):
y, x = divmod(index, size_x)
# put the visualization at the right spot in the grid
im = frame[y * height:(y + 1) * height, x * width: (x + 1) * width]
# call the visualization functions
im = vis.make_binary_histo(evs, img=im, width=width, height=height)
vis.draw_bboxes(im, boxes, labelmap=labelmap)
# display the result
cv2.imshow('out', frame)
cv2.waitKey(1)
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(
description='visualize one or several event files along with their boxes')
parser.add_argument('records', nargs="+",
help='input event files, annotation files are expected to be in the same folder')
parser.add_argument('-s', '--skip', default=0, type=int, help="skip the first n microseconds")
parser.add_argument('-d', '--delta_t', default=20000, type=int, help="load files by delta_t in microseconds")
return parser.parse_args()
if __name__ == '__main__':
ARGS = parse_args()
play_files_parallel(ARGS.records, skip=ARGS.skip, delta_t=ARGS.delta_t)