-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnet_Model.py
228 lines (170 loc) · 8.28 KB
/
Unet_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
#matplotlib inline
from tqdm import tqdm_notebook, tnrange
from itertools import chain
from skimage.io import imread, imshow, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.models import Model, load_model
from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout
from keras.layers.core import Lambda, RepeatVector, Reshape
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D
from keras.layers.merge import concatenate, add
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
# Set some parameters
im_width = 128
im_height = 128
border = 5
ids = next(os.walk("G:\Desk\OneDrive - University of Glasgow\毕业设计\images"))[2] # list of names all images in the given path
print("No. of images = ", len(ids))
X = np.zeros((len(ids), im_height, im_width, 1), dtype=np.float32)
y = np.zeros((len(ids), im_height, im_width, 1), dtype=np.float32)
# tqdm is used to display the progress bar
for n, id_ in tqdm_notebook(enumerate(ids), total=len(ids)):
# Load images
img = load_img("G:\Desk\OneDrive - University of Glasgow\毕业设计\images/"+id_, grayscale=True)
x_img = img_to_array(img)
x_img = resize(x_img, (128, 128, 1), mode = 'constant', preserve_range = True)
# Load masks
mask = img_to_array(load_img("G:\Desk\OneDrive - University of Glasgow\毕业设计/tgs-salt-identification-challenge\masks/"+id_, grayscale=True))
mask = resize(mask, (128, 128, 1), mode = 'constant', preserve_range = True)
# Save images
X[n] = x_img/255.0
y[n] = mask/255.0
# Split train and valid
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.1, random_state=42)
# Visualize any randome image along with the mask
ix = random.randint(0, len(X_train))
has_mask = y_train[ix].max() > 0 # salt indicator
fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (20, 15))
ax1.imshow(X_train[ix, ..., 0], cmap = 'seismic', interpolation = 'bilinear')
if has_mask: # if salt
# draw a boundary(contour) in the original image separating salt and non-salt areas
ax1.contour(y_train[ix].squeeze(), colors = 'k', linewidths = 5, levels = [0.5])
ax1.set_title('Seismic')
ax2.imshow(y_train[ix].squeeze(), cmap = 'gray', interpolation = 'bilinear')
ax2.set_title('Salt')
def conv2d_block(input_tensor, n_filters, kernel_size = 3, batchnorm = True):
"""Function to add 2 convolutional layers with the parameters passed to it"""
# first layer
x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\
kernel_initializer = 'he_normal', padding = 'same')(input_tensor)
if batchnorm:
x = BatchNormalization()(x)
x = Activation('relu')(x)
# second layer
x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\
kernel_initializer = 'he_normal', padding = 'same')(input_tensor)
if batchnorm:
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def get_unet(input_img, n_filters = 16, dropout = 0.1, batchnorm = True):
"""Function to define the UNET Model"""
# Contracting Path
c1 = conv2d_block(input_img, n_filters * 1, kernel_size = 3, batchnorm = batchnorm)
p1 = MaxPooling2D((2, 2))(c1)
p1 = Dropout(dropout)(p1)
c2 = conv2d_block(p1, n_filters * 2, kernel_size = 3, batchnorm = batchnorm)
p2 = MaxPooling2D((2, 2))(c2)
p2 = Dropout(dropout)(p2)
c3 = conv2d_block(p2, n_filters * 4, kernel_size = 3, batchnorm = batchnorm)
p3 = MaxPooling2D((2, 2))(c3)
p3 = Dropout(dropout)(p3)
c4 = conv2d_block(p3, n_filters * 8, kernel_size = 3, batchnorm = batchnorm)
p4 = MaxPooling2D((2, 2))(c4)
p4 = Dropout(dropout)(p4)
c5 = conv2d_block(p4, n_filters = n_filters * 16, kernel_size = 3, batchnorm = batchnorm)
# Expansive Path
u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides = (2, 2), padding = 'same')(c5)
u6 = concatenate([u6, c4])
u6 = Dropout(dropout)(u6)
c6 = conv2d_block(u6, n_filters * 8, kernel_size = 3, batchnorm = batchnorm)
u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides = (2, 2), padding = 'same')(c6)
u7 = concatenate([u7, c3])
u7 = Dropout(dropout)(u7)
c7 = conv2d_block(u7, n_filters * 4, kernel_size = 3, batchnorm = batchnorm)
u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides = (2, 2), padding = 'same')(c7)
u8 = concatenate([u8, c2])
u8 = Dropout(dropout)(u8)
c8 = conv2d_block(u8, n_filters * 2, kernel_size = 3, batchnorm = batchnorm)
u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides = (2, 2), padding = 'same')(c8)
u9 = concatenate([u9, c1])
u9 = Dropout(dropout)(u9)
c9 = conv2d_block(u9, n_filters * 1, kernel_size = 3, batchnorm = batchnorm)
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[input_img], outputs=[outputs])
return model
input_img = Input((im_height, im_width, 1), name='img')
model = get_unet(input_img, n_filters=16, dropout=0.05, batchnorm=True)
model.compile(optimizer=Adam(), loss="binary_crossentropy", metrics=["accuracy"])
model.summary()
callbacks = [
EarlyStopping(patience=10, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1),
ModelCheckpoint('model-tgs-salt.h5', verbose=1, save_best_only=True, save_weights_only=True)
]
#results = model.fit(X_train, y_train, batch_size=32, epochs=50, callbacks=callbacks,\
# validation_data=(X_valid, y_valid))
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["loss"], label="loss")
plt.plot(results.history["val_loss"], label="val_loss")
plt.plot( np.argmin(results.history["val_loss"]), np.min(results.history["val_loss"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("log_loss")
plt.legend()
plt.show()
# load the best model
model.load_weights('model-tgs-salt.h5')
# Evaluate on validation set (this must be equals to the best log_loss)
model.evaluate(X_valid, y_valid, verbose=1)
# Predict on train, val and test
preds_train = model.predict(X_train, verbose=1)
preds_val = model.predict(X_valid, verbose=1)
# Threshold predictions
preds_train_t = (preds_train > 0.5).astype(np.uint8)
preds_val_t = (preds_val > 0.5).astype(np.uint8)
np.shape(preds_val_t)
def plot_sample(X, y, preds, binary_preds, ix=None):
"""Function to plot the results"""
if ix is None:
ix = random.randint(0, len(X))
has_mask = y[ix].max() > 0
fig, ax = plt.subplots(1, 4, figsize=(20, 10))
ax[0].imshow(X[ix, ..., 0], cmap='seismic')
if has_mask:
ax[0].contour(y[ix].squeeze(), colors='k', levels=[0.5])
ax[0].set_title('Seismic')
ax[1].imshow(y[ix].squeeze())
ax[1].set_title('Salt')
ax[2].imshow(preds[ix].squeeze(), vmin=0, vmax=1)
if has_mask:
ax[2].contour(y[ix].squeeze(), colors='k', levels=[0.5])
ax[2].set_title('Salt Predicted')
ax[3].imshow(binary_preds[ix].squeeze(), vmin=0, vmax=1)
if has_mask:
ax[3].contour(y[ix].squeeze(), colors='k', levels=[0.5])
ax[3].set_title('Salt Predicted binary')
plt.show()
# Check if training data looks all right
plot_sample(X_train, y_train, preds_train, preds_train_t, ix=14)
plot_sample(X_train, y_train, preds_train, preds_train_t)
plot_sample(X_train, y_train, preds_train, preds_train_t)
plot_sample(X_train, y_train, preds_train, preds_train_t)
plot_sample(X_train, y_train, preds_train, preds_train_t)
plot_sample(X_train, y_train, preds_train, preds_train_t)
# Check if valid data looks all right
plot_sample(X_valid, y_valid, preds_val, preds_val_t, ix=19)
plot_sample(X_valid, y_valid, preds_val, preds_val_t)
plot_sample(X_valid, y_valid, preds_val, preds_val_t)