Machine Learning in Python
using Scikit-Learn

17th Nov 2019



About Me

Rohit Walimbe

Data Scientist @ PhonePe



Content

Background

Scikit Learn Introduction
Deep Dive In to Package
Connecting the dots - Demo

QA

Content

Duration : 45 Minutes

Source : https://scikit-learn.org/



https://scikit-learn.org/stable/index.html

Popularity of Python in ML |

Programming languages Popular machine learning projects

A

Top Machine Learning Languages Top Machine Learning Projects

on GitHub on GitHub
1 Python 1 tensorflow/tensorflow
2 C++ 2 scikit-learn/scikit-learn
3 lavaScript 3 explosion/spaCy
4 lava 4 luliaLang/julia
2 Popular machine learning and data science packages R Shit-Peroepiia-Cempiiing-Raniopenposs
6 lulia 6 tensorflow/serving
7 Shell 7 thtrieu/darkflow
8 R 8 ageitgey/face_recognition
9 TypeScript Packages Imported by Machine 9 RasaHQ/rasa_nlu
10 Scala Learning Projects on GitHub 10 tesseract-ocr/tesseract
‘ 1 numpy 74

2 scipy 474

3 pandas 41+

4 matplotlib 40%

5 scikit-learn 38%

6 six 31%

7 tensorflow 24

8 requests 23%

9 python-dateutil

10 pytz

https://qithub.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/ 4



https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/

Scikit-learn
Introduction



About Scikit Learn |

History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the project
and made the first public release, February the 1st 2010. Since then, several releases have appeared following a ~3 month
cycle, and a thriving international community has been leading the development.

Installing scikit-learn

Note: If you wish to contribute to the project, it's recommended you install the latest development version.

Installing the latest release

Scikit-learn requires:
e Python (>=3.5)
« NumPy (>=1.11.0)
« SciPy (>=0.17.0)
« joblib (>=0.11)

Scikit-learn plotting capabilities (i.e., functions start with “plot_") require Matplotlib (>= 1.5.1). Some of the scikit-learn ex-
amples might require one or more extra dependencies: scikit-image (>= 0.12.3), pandas (>= 0.18.0).

Warning: Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. Scikit-learn now requires Python
3.5 or newer.

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

Or conda :

conda install scikit-learn

The open-source Anaconda Distribution is the easiest way to perform Python/R

data science and machine learning on Linux, Windows, and Mac OS X. With ‘ y\' 1( ‘ /VN P 1( (
. . . Jupyter umPy || (§yscipy
15 mill Idwide, it is the industry standard for devel
over 15 million users worldwide, it is the industry standard for developing, \ ~ | e | I Numba |
pandas | 1) V| vatashader
T Bokeh || HoloViews

- N [ N Ny N ¢

#&matplotlib .@J Hzo TensorFlow | | CONDA

J \ L )

J )\
N -

testing, and training on a single machine, enabling individual data scientists to:

4

Quickly download 1,500+ Python/R data science packages

Manage libraries, dependencies, and environments with Conda

.

Develop and train machine learning and deep learning models with scikit-
learn, TensorFlow, and Theano

Analyze data with scalability and performance with Dask, NumPy, pandas,

and Numba

Visualize results with Matplotlib, Bokeh, Datashader, and Holoviews

== Windows ‘ .’ macOS ‘ G Linux

Anaconda 201910 for Linux Installer

https://github.com/scikit-learn/scikit-learn

Anaconda comes with Scikit-Learn



https://github.com/scikit-learn/scikit-learn

Setting Expectations Right |

NO GPU Support

NO Deep learning and Reinforcement Learning

@)

Only MLP

Traditional Algorithms

Inclusion Criteria for new algorithms :

O

©)

©)

Well-established algorithms for inclusion
At least 3 years since publication, 200+ citations and wide use and usefulness

Only those which fit well within the current API of scikit-learn




Home Installation Documentation ~

A9

Classification

Identifying to which category an object be-
longs to.

Applications: Spam detection, Image recog-
nition.

Algorithms: SVM, nearest neighbors, ran-
dom forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.
Applications: Visualization, Increased effi-

ciency
Algorithms: PCA, feature selection, non-

negative matrix factorization. — Examples

AbOUt SCikit Leal‘n | http://scikit-learn.org

Examples

jle Custom Search

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute as-
sociated with an object.
Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso,

— Examples

Model selection

Comparing, validating and choosing para-
meters and models.

Goal: Improved accuracy via parameter tun-
ing

Modules: grid search, cross validation, met-
rics. — Examples

Clustering

Automatic grouping of similar objects into
sets.
Applications: Customer segmentation,

Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

— Examples


http://scikit-learn.org/

AbOUt SCikit Leal'n | http://scikit-learn.org

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

get

NOT
WORKING

more
data NO

YES samples
predicting a B -
category

YES o
NOT -
Text WA 2" <100K
Data samples

YES

regression

YES

do you have
labeled
NO data

few features Nov
should be WORKING
important

<100K £s
samples

NOT
WORKING

NOT
WORKING

YES

samples NO

dimensionality
reduction



http://scikit-learn.org/

Deep Dive in to
package



1- Data Preprocessing

e Standardization , Mean Removal , Variance
Scaling : Scaling to range, Scaling Sparse Data

from sklearn import preprocessing

StandardScaler, MinMaxScaler (), Scale()

e Non Linear Transformations
preprocessing.QuantileTransformer ()

e Normalisation
X_normalized =

preprocessing.normalize (X, norm="12")

e (Categorical Encoding
enc = preprocessing.OneHotEncoder ()

e Discretization

o K-Bins
preprocessing.KBinsDiscretizer (n bins=|
3, 2, 2], encode='ordinal')

o  Feature Binarization
binarizer = preprocessing.Binarizer ()

e Imputation of Missing Values
o Univariate
from sklearn.impute import

SimpleImputer

SimpleImputer (missing values-np.nan,

strategy="'mean')

SimpleImputer (strategy="most frequent
H)

o Multivariate

from sklearn.impute import
ITterativelmputer

e Generating Polynomial Features
from sklearn.preprocessing import

PolynomialFeatures

11



2- Feature Extraction

e Feature Hashing
o Scaling to range

FeatureHasher (input type'string')

e Text Feature Extraction
o Bag of Words - Count Vectorizer

o TFIDF
o Vectorizing a large text corpus with the
hashing trick

>>> corpus = [
'This is the first document.',
'This is the second second document.',
'And the third one.',
e 'Is this the first document?’',

. ]
bigram_vectorizer = CountVectorizer(ngram_range=(1, 2),

token_pattern=r'\b\w+\b', min_df=1)

analyze = bigram_vectorizer.build_analyzer()
analyze('Bi-grams are cool!') == (

['bi', 'grams', 'are', 'cool', 'bi grams', 'grams are', 'are cool'])

a

>>> transformer = TfidfTransformer()
>>> transformer.fit_transform(counts).toarray()

array([[0.85151335, 0. , 0.52433293],
1. 3 0. y 0. 1,
[1- ’ Q. ’ » ],
[1. 5 0. ; 0. 1;
[0.55422893, 0.83236428, 0. 1
[0.63035731, 0. , 0.77630514]1])

e Image Feature Extraction

o Patch Extraction

Caveat :
Better packages are available for

text and image feature extractors

12



3- Dimension Reduction

e Principal Component Analysis
from sklearn.decomposition import PCA
o Incremental PCA
o Kernel PCA
e Truncated SVD
from sklearn.decomposition import TruncatedSVD

e Feature Selection
from sklearn.feature selection import VarianceThreshold

from sklearn.feature_selection import SelectFromModel

e Non-Negative Matrix Factorisation
from sklearn.decomposition import NMF

e LDA
from sklearn.decomposition import LatentDirichletAllocation

13



4- Classification & Regression

1.1. Generalized Linear Models

= 1.1.1. Ordinary Least Squares
o 1.1.1.1. Ordinary Least Squares Complexity H H

. i R 1.3. Kernel ridge regression
o 1.1.2.1. Ridge Complexity

o 1.1.2.2. Setting the regularization parameter: generalized Cross-Validation 1 .4. S u p po rt Vecto r Mach i nes

= 1.1.3. Lasso

o 1.1.3.1. Setting regularization parameter s 1.4.1. Classification
= 1.1.3.1.1. Using cross-validation 2 i 3
= 1.1.3.1.2. Information-criteria based model selection o 1.4.1.1. Multi-class classification
= 1.1.3.1.3. Comparison with the regularization parameter of SVM o 1.4.1.2. Scores and probabilities

= LI MR KL o 1.4.1.3. Unbalanced problems
= 1.1.5. Elastic-Net :
= 1.1.6. Multi-task Elastic-Net = 1.4.2. Regression
= 1.1.7. Least Angle Regression = 1.4.3. Density estimation, novelty detection
= 1.1.8. LARS Lasso :

o 1.1.8.1. Mathematical formulation = 1.4.4. CompIeXIty
= 1.1.9. Orthogonal Matching Pursuit (OMP) = 1.4.5. Tips on Practical Use
" LAk BayesEn Pegmesion _ = 1.4.6. Kernel functions

o 1.1.10.1. Bayesian Ridge Regression

o 1.1.10.2. Automatic Relevance Determination - ARD o 1.4.6.1. Custom Kernels
= 1.1.11. Logistic regression » 1.4.6.1.1. Using Python functions as kernels
= 1.1.12. Stochastic Gradient Descent - SGD = 1.4.6.1.2. Using the Gram matrix
= 1.1.13. Percepron T
= 1.1.14. Passive Aggressive Algorithms = 1.4.6.1.3. Parameters of the RBF Kernel
= 1.1.15. Robustness regression: outliers and modeling errors = 1.4.7. Mathematical formulation

o 1.1.15.1. Different scenario and useful concepts o 1.4.7.1.SVC

o 1.1.15.2. RANSAC: RANdom SAmple Consensus

= 1.1.15.2.1. Details of the algorithm o 1.4.7.2. NuSVC
o 1.1.15.3. Theil-Sen estimator: generalized-median-based estimator o 1.4.7.3. SVR
= 1.1.15.3.1. Theoretical considerations " <
& 11838, Hilbsr Fpession = 1.4.8. Implementation details

o 1.1.15.5. Notes

= 1.1.16. Polynomial regression: extending linear models with basis functions




4- Classification & Regression

1.6. Nearest Neighbors

= 1.6.1. Unsupervised Nearest Neighbors
o 1.6.1.1. Finding the Nearest Neighbors
o 1.6.1.2. KDTree and BallTree Classes
1.6.2. Nearest Neighbors Classification
1.6.3. Nearest Neighbors Regression
1.6.4. Nearest Neighbor Algorithms
1.6.4.1. Brute Force
1.6.4.2. K-D Tree
1.6.4.3. Ball Tree
1.6.4.4. Choice of Nearest Neighbors Algorithm
o 1.6.4.5. Effect of leaf_size

1.6.5. Nearest Centroid Classifier

o

o

o

o

o 1.6.5.1. Nearest Shrunken Centroid
1.6.6. Neighborhood Components Analysis

o 1.6.6.1. Classification

o 1.6.6.2. Dimensionality reduction

o 1.6.6.3. Mathematical formulation

= 1.6.6.3.1. Mahalanobis distance
1.6.6.4. Implementation
1.6.6.5. Complexity

= 1.6.6.5.1. Training

= 1.6.6.5.2. Transform

o

o

1.9. Naive Bayes

= 1.9.1. Gaussian Naive Bayes

1.9.2. Multinomial Naive Bayes

1.9.3. Complement Naive Bayes
1.9.4. Bernoulli Naive Bayes

1.9.5. Out-of-core naive Bayes model

1.10. Decision Trees

1.10.1. Classification

1.10.2. Regression

1.10.3. Multi-output problems
= 1.10.4. Complexity

1.10.5. Tips on practical use

1

1

.10.7. Mathematical formulation
o 1.10.7.1. Classification criteria
o 1.10.7.2. Regression criteria

1.11. Ensemble methods

= 1.11.1. Bagging meta-estimator
= 1.11.2. Forests of randomized trees
o 1.11.2.1. Random Forests
o 1.11.2.2. Extremely Randomized Trees
o 1.11.2.3. Parameters
o 1.11.2.4. Parallelization
o 1.11.2.5. Feature importance evaluation
o 1.11.2.6. Totally Random Trees Embedding
= 1.11.3. AdaBoost
o 1.11.3.1. Usage
= 1.11.4. Gradient Tree Boosting
o 1.11.4.1. Classification
o 1.11.4.2. Regression
o 1.11.4.3. Fitting additional weak-learners
o 1.11.4.4. Controlling the tree size
o 1.11.4.5. Mathematical formulation
= 1.11.4.5.1. Loss Functions
o 1.11.4.6. Regularization
= 1.11.4.6.1. Shrinkage
= 1.11.4.6.2. Subsampling
o 1.11.4.7. Interpretation
= 1.11.4.7.1. Feature importance
= 1.11.5. Voting Classifier
o 1.11.5.1. Majority Class Labels (Majority/Hard Voting)
= 1.11.5.1.1. Usage
o 1.11.5.2. Weighted Average Probabilities (Soft Voting)
o 1.11.5.3. Using the votingClassifier With Gridsearchcv
= 1.11.5.3.1. Usage
= 1.11.6. Voting Regressor

.10.6. Tree algorithms: ID3, C4.5, C5.0 and CART

15




4-

Classification & Regression

1.12. Multiclass and multilabel algorithms

1.12.1. Multilabel classification format
1.12.2. One-Vs-The-Rest

o 1.12.2.1. Multiclass learning
o 1.12.2.2. Multilabel learning

1.12.3. One-Vs-One
o 1.12.3.1. Multiclass learning
1.12.4. Error-Correcting Output-Codes
o 1.12.4.1. Multiclass learning

1.12.5. Multioutput regression

1.12.6. Multioutput classification
1.12.7. Classifier Chain "
1.12.8. Regressor Chain

q
Y
:
Y
. 1
1
3
g
q

1.17. Neural network models (supervised)

.17.1. Multi-layer Perceptron
.17.2. Classification

.17.3. Regression

.17.4. Regularization

.17.5. Algorithms

.17.6. Complexity

.17.7. Mathematical formulation
.17.8. Tips on Practical Use
.17.9. More control with warm_start

ONLY MLP

16



6- Clustering

Method name
K-Means

Affinity
propagation
Mean-shift

Spectral
clustering

Ward
hierarchical
clustering

Agglomerative
clustering

DBSCAN

OPTICS

Gaussian
mixtures

Birch

Parameters

number of
clusters

damping, sample
preference
bandwidth

number of
clusters

number of
clusters or
distance
threshold

number of
clusters or
distance
threshold, linkage
type, distance

neighborhood
size

minimum cluster
membership

many

branching factor,
threshold,
optional global
clusterer.

Scalability

Very large

n samples , medium
n_clusters With
MiniBatch code

Not scalable with
n_samples

Not scalable with
n_samples

Medium n samples,
small n_clusters
Large n samples
and n_clusters

Large n samples
and n_clusters

Very large

n samples , medium
n_clusters

Very large

n samples, large
n_clusters

Not scalable

Large n clusters
and n_samples

Usecase

General-purpose, even cluster
size, flat geometry, not too
many clusters

Many clusters, uneven cluster
size, non-flat geometry

Many clusters, uneven cluster
size, non-flat geometry

Few clusters, even cluster
size, non-flat geometry

Many clusters, possibly
connectivity constraints

Many clusters, possibly
connectivity constraints, non
Euclidean distances

Non-flat geometry, uneven
cluster sizes

Non-flat geometry, uneven
cluster sizes, variable cluster
density

Flat geometry, good for density
estimation

Large dataset, outlier removal,
data reduction.

Geometry (metric
used)

Distances between
points

Graph distance (e.g.
nearest-neighbor graph)
Distances between
points

Graph distance (e.g.
nearest-neighbor graph)

Distances between
points

Any pairwise distance

Distances between
nearest points

Distances between
points

Mahalanobis distances
to centers

Euclidean distance
between points

17



7- Model Selection and Performance

3.1. Cross-validation: evaluating estimator performance

= 3.1.1. Computing cross-validated metrics
o 3.1.1.1. The cross_validate function and multiple metric evaluation
o 3.1.1.2. Obtaining predictions by cross-validation
= 3.1.2. Cross validation iterators
o 3.1.2.1. Cross-validation iterators for i.i.d. data
= 3.1.2.1.1. K-fold
3.1.2.1.2. Repeated K-Fold
3.1.2.1.3. Leave One Out (LOO)
3.1.2.1.4. Leave P Out (LPO)
3.1.2.1.5. Random permutations cross-validation a.k.a. Shuffle & Split
3.1.2.2. Cross-validation iterators with stratification based on class labels.
= 3.1.2.2.1. Stratified k-fold
= 3.1.2.2.2. Stratified Shuffle Split
3.1.2.3. Cross-validation iterators for grouped data.
= 3.1.2.3.1. Group k-fold
= 3.1.2.3.2. Leave One Group Out
= 3.1.2.3.3. Leave P Groups Out
= 3.1.2.3.4. Group Shuffle Split
3.1.2.4. Predefined Fold-Splits / Validation-Sets
3.1.2.5. Cross validation of time series data
= 3.1.2.5.1. Time Series Split

= 3.1.3. A note on shuffling
s 3.1.4. Cross validation and model selection

o

o

o

o

18



7- Model Selection and Performance

3.3. Model evaluation: quantifying the quality of predictions

= 3.3.1. The scoring parameter: defining model evaluation rules
o 3.3.1.1. Common cases: predefined values
o 3.3.1.2. Defining your scoring strategy from metric functions
o 3.3.1.3. Implementing your own scoring object
o 3.3.1.4. Using multiple metric evaluation
= 3.3.2. Classification metrics
o 3.3.2.1. From binary to multiclass and multilabel
o 3.3.2.2. Accuracy score
o 3.3.2.3. Balanced accuracy score
o 3.3.2.4. Cohen’s kappa
o 3.3.2.5. Confusion matrix
o 3.3.2.6. Classification report
o 3.3.2.7. Hamming loss
o 3.3.2.8. Precision, recall and F-measures
= 3.3.2.8.1. Binary classification
= 3.3.2.8.2. Multiclass and multilabel classification
o 3.3.2.9. Jaccard similarity coefficient score
o 3.3.2.10. Hinge loss
o 3.3.2.11. Log loss
o 3.3.2.12. Matthews correlation coefficient
o 3.3.2.13. Multi-label confusion matrix
o 3.3.2.14. Receiver operating characteristic (ROC)
o 3.3.2.15. Zero one loss
o 3.3.2.16. Brier score loss
= 3.3.3. Multilabel ranking metrics
o 3.3.3.1. Coverage error
o 3.3.3.2. Label ranking average precision
o 3.3.3.3. Ranking loss
= 3.3.4. Regression metrics
o 3.3.4.1. Explained variance score
o 3.3.4.2. Max error
o 3.3.4.3. Mean absolute error
o 3.3.4.4. Mean squared error
o 3.3.4.5. Mean squared logarithmic error
o 3.3.4.6. Median absolute error
o 3.3.4.7. R2 score, the coefficient of determination
= 3.3.5. Clustering metrics

3.2. Tuning the hyper-parameters of an estimator
= 3.2.1. Exhaustive Grid Search
= 3.2.2. Randomized Parameter Optimization
= 3.2.3. Tips for parameter search
o 3.2.3.1. Specifying an objective metric
o 3.2.3.2. Specifying multiple metrics for evaluation
o 3.2.3.3. Composite estimators and parameter spaces
o 3.2.3.4. Model selection: development and evaluation
o 3.2.3.5. Parallelism
o 3.2.3.6. Robustness to failure
= 3.2.4. Alternatives to brute force parameter search
o 3.2.4.1. Model specific cross-validation

3.2.4.1.1. sklearn.linear_ model .ElasticNetCV
3.2.4.1.2. sklearn.linear_model .LarsCV
3.2.4.1.3. sklearn.linear_model .LassoCV

= 3.2.4.1.3.1. Examples using sklearn.linear_model.LassoCV
3.2.4.1.4. sklearn.linear_model .LassoLarsCV

= 3.2.4.1.4.1. Examples using sklearn.linear_model.LassoLarsCV
3.2.4.1.5. sklearn.linear_model .LogisticRegressionCV
3.2.4.1.6. sklearn.linear_model .MultiTaskElasticNetCV
3.2.4.1.7. sklearn.linear_ model .MultiTaskLassoCV
3.2.4.1.8. sklearn.linear_model .OrthogonalMatchingPursuitCV

= 3.2.4.1.8.1. Examples using

sklearn.linear_model.OrthogonalMatchingPursuitCVv

3.2.4.1.9. sklearn.linear_model .RidgeCV

= 3.2.4.1.9.1. Examples using sklearn.linear_model.RidgeCV
3.2.4.1.10. sklearn.linear_model .RidgeClassifierCV

o 3.2.4.2. Information Criterion

3.2.4.2.1. sklearn.linear_model .LassolarsIC
= 3.2.4.2.1.1. Examples using sklearn.linear_model.LassoLarsIC

o 3.2.4.3. Out of Bag Estimates

3.2.4.3.1. sklearn.ensemble .RandomForestClassifier

= 3.2.4.3.1.1. Examples using sklearn.ensemble.RandomForestClassifier
3.2.4.3.2. sklearn.ensemble .RandomForestRegressor

= 3.2.4.3.2.1. Examples using sklearn.ensemble.RandomForestRegressor
3.2.4.3.3. sklearn.ensemble .ExtraTreesClassifier

= 3.2.4.3.3.1. Examples using sklearn.ensemble.ExtraTreesClassifier
3.2.4.3.4. sklearn.ensemble .ExtraTreesRegressor

= 3.2.4.3.4.1. Examples using sklearn.ensemble.ExtraTreesRegressor
3.2.4.3.5. sklearn.ensemble .GradientBoostingClassifier

= 3.2.4.3.5.1. Examples using sklearn.ensemble.GradientBoostingClassifier
3.2.4.3.6. sklearn.ensemble .GradientBoostingRegressor

= 3.2.4.3.6.1. Examples using sklearn.ensemble.GradientBoostingRegressor

= 3.3.6. Dummy estimators

19



7- Model Selection and Performance

Clustering Performance Metrics :

1- Adjusted Rand Index
2- Mutual Information Based Scores
3- Homogeneity Completeness and V Score

4- Fowlkes Mallows Score

5- Silhouette Coefficient
6- Calinski-Harabasz Index

7- Davies-Bouldin Index

20



Computing with
Scikit-learn



Computing With Scikit-Learn

1- Scaling with instances using out-of-core
learning

2- Incremental Learning

3- Configuring Scikit-learn for reduced
validation overhead
sklearn.config context
Model Compression
Model Reshaping
Limiting Memory

4- Parallelism, resource management, and
configuration

Joblib

Navigation

Why joblib: project goals
Installing joblib

On demand recomputing:
the Memory class
Embarrassingly parallel

for loops
Persistence

Examples
Development

joblib.Memory
joblib.Parallel
joblib.dump
joblib.load

joblib.hash
joblib.register_compress
or

Joblib: running Python
functions as pipeline jobs

Introduction
Joblib is a set of tools to provide lightweight pipelining in Python. In particular:

1. transparent disk-caching of functions and lazy re-evaluation (memoize pattern)
2. easy simple parallel computing

Joblib is optimized to be fast and robust on large data in particular and has specific
optimizations for numpy arrays. It is BSD-licensed.

Documentation: https://joblib.readthedocs.io

Download: https://pypi.python.org/pypi/joblib#downloads
https://github.com/joblib/joblib

https://github.com/joblib/joblib/issues

Source code:

Report issues:

Vision
The vision is to provide tools to easily achieve better performance and reproducibility
when working with long running jobs.

o Avoid computing the same thing twice: code is often rerun again and again,
for instance when prototyping computational-heavy jobs (as in scientific develop-
ment), but hand-crafted solutions to alleviate this issue are error-prone and often
lead to unreproducible results.

Persist to disk transparently: efficiently persisting arbitrary objects containing
large data is hard. Using joblib’s caching mechanism avoids hand-written persis-
tence and implicitly links the file on disk to the execution context of the original
Python object. As a result, joblib’s persistence is good for resuming an application
status or computational job, eg after a crash.

22



Other Related
Projects



scikit-learn-contrib

scikit-learn-contrib

scikit-learn-contrib is a github organization for gathering high-quality scikit-learn compatible projects. It also provides a
template for establishing new scikit-learn compatible projects.

>\/ision

With the explosion of the number of machine learning papers, it becomes increasingly difficult for users and
researchers to implement and compare algorithms. Even when authors release their software, it takes time to learn how
to use it and how to apply it to one's own purposes. The goal of scikit-learn-contrib is to provide easy-to-install and
easy-to-use high-quality machine learning software. With scikit-learn-contrib, users can install a project by pip
install sklearn-contrib-project-name and immediately try it on their data with the usual fit, predict and
transform methods. In addition, projects are compatible with scikit-learn tools such as grid search, pipelines, etc.

lightning
Large-scale linear classification, regression and ranking.

Maintained by Mathieu Blondel and Fabian Pedregosa.

py-earth

A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines.

Maintained by Jason Rudy and Mehdi.

imbalanced-learn

Python module to perform under sampling and over sampling with various techniques.

Maintained by Guillaume Lemaitre, Fernando Nogueira, Dayvid Oliveira and Christos Aridas.

polylearn

Factorization machines and polynomial networks for classification and regression in Python.

Maintained by Vlad Niculae.

forest-confidence-interval

Confidence intervals for scikit-learn forest algorithms.

Maintained by Ariel Rokem, Kivan Polimis and Bryna Hazelton.

Projects

hdbscan

If you would like to include your own project in scikit-learn-contrib, take a look at the workflow.

categorical-encoding

Maintained by Will McGinnis

boruta_py

Maintained by Daniel Homola

sklearn-pandas

Pandas integration with sklearn.

Maintained by Israel Saeta Pérez

@skope-rules

stability-selection

T I -

A high performance implementation of HDBSCAN clustering.

Maintained by Leland Mclnnes, jc-healy, c-north and Steve Astels.

Alibrary of sklearn compatible categorical variable encoders.

Python implementations of the Boruta all-relevant feature selection method.

Machine learning with logical rules in Python.

Maintained by Florian Gardin, Ronan Gautier, Nicolas Goix and Jean-Matthieu Schertzer.

A Python implementation of the stability selection feature selection algorithm.

24



Spark scikit-learn

Scikit-learn integration package for Apache Spark

This package contains some tools to integrate the Spark computing framework with the popular scikit-learn machine
library. Among other things, it can:

¢ train and evaluate multiple scikit-learn models in parallel. It is a distributed analog to the multicore implementation
included by default in scikit-learn

e convert Spark's Dataframes seamlessly into numpy ndarray or sparse matrices

¢ (experimental) distribute Scipy's sparse matrices as a dataset of sparse vectors

It focuses on problems that have a small amount of data and that can be run in parallel. For small datasets, it distributes
the search for estimator parameters ( GridSearchCV in scikit-learn), using Spark. For datasets that do not fit in memory,
we recommend using the distributed implementation in “Spark MLIib.

This package distributes simple tasks like grid-search cross-validation. It does not distribute individual learning
algorithms (unlike Spark MLIib).

Installation

This package is available on PYPI:

pip install spark-sklearn

This project is also available as Spark package.
The developer version has the following requirements:

¢ scikit-learn 0.18 or 0.19. Later versions may work, but tests currently are incompatible with 0.20.

e Spark >= 2.1.1. Spark may be downloaded from the Spark website. In order to use this package, you need to use the
pyspark interpreter or another Spark-compliant python interpreter. See the Spark guide for more details.

¢ nose (testing dependency only)

e pandas, if using the pandas integration or testing. pandas==0.18 has been tested.

25



DEMO



THANK YOU



