-
Notifications
You must be signed in to change notification settings - Fork 418
/
Copy pathoptimize.py
1536 lines (1402 loc) · 67 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Methods for optimizing acquisition functions.
"""
from __future__ import annotations
import dataclasses
import warnings
from collections.abc import Callable
from typing import Any
import torch
from botorch.acquisition.acquisition import (
AcquisitionFunction,
OneShotAcquisitionFunction,
)
from botorch.acquisition.knowledge_gradient import qKnowledgeGradient
from botorch.acquisition.multi_objective.hypervolume_knowledge_gradient import (
qHypervolumeKnowledgeGradient,
)
from botorch.exceptions import InputDataError, UnsupportedError
from botorch.exceptions.errors import CandidateGenerationError
from botorch.exceptions.warnings import OptimizationWarning
from botorch.generation.gen import gen_candidates_scipy, TGenCandidates
from botorch.logging import logger
from botorch.optim.initializers import (
gen_batch_initial_conditions,
gen_one_shot_hvkg_initial_conditions,
gen_one_shot_kg_initial_conditions,
TGenInitialConditions,
)
from botorch.optim.parameter_constraints import evaluate_feasibility
from botorch.optim.stopping import ExpMAStoppingCriterion
from torch import Tensor
INIT_OPTION_KEYS = {
# set of options for initialization that we should
# not pass to scipy.optimize.minimize to avoid
# warnings
"alpha",
"batch_limit",
"eta",
"init_batch_limit",
"nonnegative",
"n_burnin",
"sample_around_best",
"sample_around_best_sigma",
"sample_around_best_prob_perturb",
"seed",
"thinning",
}
@dataclasses.dataclass(frozen=True)
class OptimizeAcqfInputs:
"""
Container for inputs to `optimize_acqf`.
See docstring for `optimize_acqf` for explanation of parameters.
"""
acq_function: AcquisitionFunction
bounds: Tensor
q: int
num_restarts: int
raw_samples: int | None
options: dict[str, bool | float | int | str] | None
inequality_constraints: list[tuple[Tensor, Tensor, float]] | None
equality_constraints: list[tuple[Tensor, Tensor, float]] | None
nonlinear_inequality_constraints: list[tuple[Callable, bool]] | None
fixed_features: dict[int, float] | None
post_processing_func: Callable[[Tensor], Tensor] | None
batch_initial_conditions: Tensor | None
return_best_only: bool
gen_candidates: TGenCandidates
sequential: bool
ic_generator: TGenInitialConditions | None = None
timeout_sec: float | None = None
return_full_tree: bool = False
retry_on_optimization_warning: bool = True
ic_gen_kwargs: dict = dataclasses.field(default_factory=dict)
@property
def full_tree(self) -> bool:
return self.return_full_tree or (
not isinstance(self.acq_function, OneShotAcquisitionFunction)
)
def __post_init__(self) -> None:
if self.inequality_constraints is None and not (
self.bounds.ndim == 2 and self.bounds.shape[0] == 2
):
raise ValueError(
"bounds should be a `2 x d` tensor, current shape: "
f"{list(self.bounds.shape)}."
)
d = self.bounds.shape[1]
if self.batch_initial_conditions is not None:
batch_initial_conditions_shape = self.batch_initial_conditions.shape
if len(batch_initial_conditions_shape) not in (2, 3):
raise ValueError(
"batch_initial_conditions must be 2-dimensional or "
"3-dimensional. Its shape is "
f"{batch_initial_conditions_shape}."
)
if batch_initial_conditions_shape[-1] != d:
raise ValueError(
f"batch_initial_conditions.shape[-1] must be {d}. The "
f"shape is {batch_initial_conditions_shape}."
)
if (
len(batch_initial_conditions_shape) == 2
and self.raw_samples is not None
):
warnings.warn(
"If using a 2-dim `batch_initial_conditions` botorch will "
"default to old behavior of ignoring `num_restarts` and just "
"use the given `batch_initial_conditions` by setting "
"`raw_samples` to None.",
RuntimeWarning,
stacklevel=3,
)
# Use object.__setattr__ to bypass immutability and set a value
object.__setattr__(self, "raw_samples", None)
if (
len(batch_initial_conditions_shape) == 3
and batch_initial_conditions_shape[0] < self.num_restarts
and batch_initial_conditions_shape[-2] != self.q
and self.raw_samples is not None
):
warnings.warn(
"If using a 3-dim `batch_initial_conditions` where the "
"first dimension is less than `num_restarts` and the second "
"dimension is not equal to `q`, botorch will default to "
"old behavior of ignoring `num_restarts` and just use the "
"given `batch_initial_conditions` by setting `raw_samples` "
"to None.",
RuntimeWarning,
stacklevel=3,
)
# Use object.__setattr__ to bypass immutability and set a value
object.__setattr__(self, "raw_samples", None)
elif self.ic_generator is None:
if self.nonlinear_inequality_constraints is not None:
raise RuntimeError(
"`ic_generator` must be given if "
"there are non-linear inequality constraints."
)
if self.raw_samples is None:
raise ValueError(
"Must specify `raw_samples` when "
"`batch_initial_conditions` is None`."
)
if self.fixed_features is not None and any(
(k < 0 for k in self.fixed_features)
):
raise ValueError("All indices (keys) in `fixed_features` must be >= 0.")
def get_ic_generator(self) -> TGenInitialConditions:
if self.ic_generator is not None:
return self.ic_generator
elif isinstance(self.acq_function, qKnowledgeGradient):
return gen_one_shot_kg_initial_conditions
elif isinstance(self.acq_function, qHypervolumeKnowledgeGradient):
return gen_one_shot_hvkg_initial_conditions
return gen_batch_initial_conditions
def _optimize_acqf_all_features_fixed(
*,
bounds: Tensor,
fixed_features: dict[int, float],
q: int,
acq_function: AcquisitionFunction,
) -> tuple[Tensor, Tensor]:
"""
Helper function for `optimize_acqf` for the trivial case where
all features are fixed.
"""
X = torch.tensor(
[fixed_features[i] for i in range(bounds.shape[-1])],
device=bounds.device,
dtype=bounds.dtype,
)
X = X.expand(q, *X.shape)
with torch.no_grad():
acq_value = acq_function(X)
return X, acq_value
def _validate_sequential_inputs(opt_inputs: OptimizeAcqfInputs) -> None:
# Validate that constraints across the q-dim and
# self.sequential are not present together.
const_err_message = (
"Inter-point constraints are not supported for sequential optimization. "
"But the {}th {} constraint is defined as inter-point."
)
if opt_inputs.inequality_constraints is not None:
for i, constraint in enumerate(opt_inputs.inequality_constraints):
if len(constraint[0].shape) > 1:
raise UnsupportedError(const_err_message.format(i, "linear inequality"))
if opt_inputs.equality_constraints is not None:
for i, constraint in enumerate(opt_inputs.equality_constraints):
if len(constraint[0].shape) > 1:
raise UnsupportedError(const_err_message.format(i, "linear equality"))
if opt_inputs.nonlinear_inequality_constraints is not None:
for i, (_, intra_point) in enumerate(
opt_inputs.nonlinear_inequality_constraints
):
if not intra_point:
raise UnsupportedError(
const_err_message.format(i, "non-linear inequality")
)
# TODO: Validate constraints if provided:
# https://github.com/pytorch/botorch/pull/1231
if opt_inputs.batch_initial_conditions is not None:
raise UnsupportedError(
"`batch_initial_conditions` is not supported for sequential "
"optimization. Either avoid specifying "
"`batch_initial_conditions` to use the custom initializer or "
"use the `ic_generator` kwarg to generate initial conditions "
"for the case of nonlinear inequality constraints."
)
if not opt_inputs.return_best_only:
raise NotImplementedError(
"`return_best_only=False` only supported for joint optimization."
)
if isinstance(opt_inputs.acq_function, OneShotAcquisitionFunction):
raise NotImplementedError(
"sequential optimization currently not supported for one-shot "
"acquisition functions. Must have `sequential=False`."
)
def _optimize_acqf_sequential_q(
opt_inputs: OptimizeAcqfInputs,
) -> tuple[Tensor, Tensor]:
"""
Helper function for `optimize_acqf` when sequential=True and q > 1.
For each of `q` times, generate a single candidate greedily, then add it to
the list of pending points.
"""
_validate_sequential_inputs(opt_inputs)
# When using sequential optimization, we allocate the total timeout
# evenly across the individual acquisition optimizations.
timeout_sec = (
opt_inputs.timeout_sec / opt_inputs.q
if opt_inputs.timeout_sec is not None
else None
)
candidate_list, acq_value_list = [], []
base_X_pending = opt_inputs.acq_function.X_pending
new_inputs = dataclasses.replace(
opt_inputs,
q=1,
batch_initial_conditions=None,
return_best_only=True,
sequential=False,
timeout_sec=timeout_sec,
)
for i in range(opt_inputs.q):
candidate, acq_value = _optimize_acqf_batch(new_inputs)
candidate_list.append(candidate)
acq_value_list.append(acq_value)
candidates = torch.cat(candidate_list, dim=-2)
new_inputs.acq_function.set_X_pending(
torch.cat([base_X_pending, candidates], dim=-2)
if base_X_pending is not None
else candidates
)
logger.info(f"Generated sequential candidate {i + 1} of {opt_inputs.q}")
opt_inputs.acq_function.set_X_pending(base_X_pending)
return candidates, torch.stack(acq_value_list)
def _combine_initial_conditions(
provided_initial_conditions: Tensor | None = None,
generated_initial_conditions: Tensor | None = None,
dim=0,
) -> Tensor:
if (
provided_initial_conditions is not None
and generated_initial_conditions is not None
):
return torch.cat(
[provided_initial_conditions, generated_initial_conditions], dim=dim
)
elif provided_initial_conditions is not None:
return provided_initial_conditions
elif generated_initial_conditions is not None:
return generated_initial_conditions
else:
raise ValueError(
"Either `batch_initial_conditions` or `raw_samples` must be set."
)
def _optimize_acqf_batch(opt_inputs: OptimizeAcqfInputs) -> tuple[Tensor, Tensor]:
options = opt_inputs.options or {}
required_num_restarts = opt_inputs.num_restarts
provided_initial_conditions = opt_inputs.batch_initial_conditions
generated_initial_conditions = None
if (
provided_initial_conditions is not None
and len(provided_initial_conditions.shape) == 3
):
required_num_restarts -= provided_initial_conditions.shape[0]
if opt_inputs.raw_samples is not None and required_num_restarts > 0:
# pyre-ignore[28]: Unexpected keyword argument `acq_function`
# to anonymous call.
generated_initial_conditions = opt_inputs.get_ic_generator()(
acq_function=opt_inputs.acq_function,
bounds=opt_inputs.bounds,
q=opt_inputs.q,
num_restarts=required_num_restarts,
raw_samples=opt_inputs.raw_samples,
fixed_features=opt_inputs.fixed_features,
options=options,
inequality_constraints=opt_inputs.inequality_constraints,
equality_constraints=opt_inputs.equality_constraints,
**opt_inputs.ic_gen_kwargs,
)
batch_initial_conditions = _combine_initial_conditions(
provided_initial_conditions=provided_initial_conditions,
generated_initial_conditions=generated_initial_conditions,
)
batch_limit: int = options.get(
"batch_limit",
(
opt_inputs.num_restarts
if not opt_inputs.nonlinear_inequality_constraints
else 1
),
)
gen_kwargs = {}
for constraint_name in [
"inequality_constraints",
"equality_constraints",
"nonlinear_inequality_constraints",
]:
if (constraint := getattr(opt_inputs, constraint_name)) is not None:
gen_kwargs[constraint_name] = constraint
def _optimize_batch_candidates() -> tuple[Tensor, Tensor, list[Warning]]:
batch_candidates_list: list[Tensor] = []
batch_acq_values_list: list[Tensor] = []
batched_ics = batch_initial_conditions.split(batch_limit)
opt_warnings = []
timeout_sec = (
opt_inputs.timeout_sec / len(batched_ics)
if opt_inputs.timeout_sec is not None
else None
)
bounds = opt_inputs.bounds
lower_bounds = None if bounds[0].isinf().all() else bounds[0]
upper_bounds = None if bounds[1].isinf().all() else bounds[1]
gen_options = {k: v for k, v in options.items() if k not in INIT_OPTION_KEYS}
for i, batched_ics_ in enumerate(batched_ics):
# optimize using random restart optimization
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always", category=OptimizationWarning)
(
batch_candidates_curr,
batch_acq_values_curr,
) = opt_inputs.gen_candidates(
batched_ics_,
opt_inputs.acq_function,
lower_bounds=lower_bounds,
upper_bounds=upper_bounds,
options=gen_options,
fixed_features=opt_inputs.fixed_features,
timeout_sec=timeout_sec,
**gen_kwargs,
)
opt_warnings += ws
batch_candidates_list.append(batch_candidates_curr)
batch_acq_values_list.append(batch_acq_values_curr)
logger.info(f"Generated candidate batch {i + 1} of {len(batched_ics)}.")
batch_candidates = torch.cat(batch_candidates_list)
has_scalars = batch_acq_values_list[0].ndim == 0
if has_scalars:
batch_acq_values = torch.stack(batch_acq_values_list)
else:
batch_acq_values = torch.cat(batch_acq_values_list).flatten()
return batch_candidates, batch_acq_values, opt_warnings
batch_candidates, batch_acq_values, ws = _optimize_batch_candidates()
optimization_warning_raised = any(
issubclass(w.category, OptimizationWarning) for w in ws
)
if optimization_warning_raised and opt_inputs.retry_on_optimization_warning:
first_warn_msg = (
"Optimization failed in `gen_candidates_scipy` with the following "
f"warning(s):\n{[w.message for w in ws]}\nBecause you specified "
"`batch_initial_conditions` larger than required `num_restarts`, "
"optimization will not be retried with new initial conditions and "
"will proceed with the current solution. Suggested remediation: "
"Try again with different `batch_initial_conditions`, don't provide "
"`batch_initial_conditions`, or increase `num_restarts`."
if batch_initial_conditions is not None and required_num_restarts <= 0
else "Optimization failed in `gen_candidates_scipy` with the following "
f"warning(s):\n{[w.message for w in ws]}\nTrying again with a new "
"set of initial conditions."
)
warnings.warn(first_warn_msg, RuntimeWarning, stacklevel=2)
if opt_inputs.raw_samples is not None and required_num_restarts > 0:
generated_initial_conditions = opt_inputs.get_ic_generator()(
acq_function=opt_inputs.acq_function,
bounds=opt_inputs.bounds,
q=opt_inputs.q,
num_restarts=required_num_restarts,
raw_samples=opt_inputs.raw_samples,
fixed_features=opt_inputs.fixed_features,
options=options,
inequality_constraints=opt_inputs.inequality_constraints,
equality_constraints=opt_inputs.equality_constraints,
**opt_inputs.ic_gen_kwargs,
)
batch_initial_conditions = _combine_initial_conditions(
provided_initial_conditions=provided_initial_conditions,
generated_initial_conditions=generated_initial_conditions,
)
batch_candidates, batch_acq_values, ws = _optimize_batch_candidates()
optimization_warning_raised = any(
issubclass(w.category, OptimizationWarning) for w in ws
)
if optimization_warning_raised:
warnings.warn(
"Optimization failed on the second try, after generating a "
"new set of initial conditions.",
RuntimeWarning,
stacklevel=2,
)
if opt_inputs.post_processing_func is not None:
batch_candidates = opt_inputs.post_processing_func(batch_candidates)
with torch.no_grad():
acq_values_list = [
opt_inputs.acq_function(cand)
for cand in batch_candidates.split(batch_limit, dim=0)
]
batch_acq_values = torch.cat(acq_values_list, dim=0)
# SLSQP can sometimes fail to produce a feasible candidate. Check for
# feasibility and error out if necessary.
is_feasible = evaluate_feasibility(
X=batch_candidates,
inequality_constraints=gen_kwargs.get("inequality_constraints"),
equality_constraints=gen_kwargs.get("equality_constraints"),
nonlinear_inequality_constraints=gen_kwargs.get(
"nonlinear_inequality_constraints"
),
)
infeasible = ~is_feasible
if (opt_inputs.return_best_only and (not is_feasible.any())) or infeasible.all():
raise CandidateGenerationError(
f"The optimizer produced infeasible candidates. "
f"{(~is_feasible).sum().item()} out of {is_feasible.numel()} batches "
"of candidates were infeasible. Please make sure the constraints are "
"satisfiable and relax them if needed. "
)
if opt_inputs.return_best_only:
# filter for feasible candidates
batch_acq_values[infeasible] = -float("inf")
best = torch.argmax(batch_acq_values.view(-1), dim=0)
batch_candidates = batch_candidates[best]
batch_acq_values = batch_acq_values[best]
if not opt_inputs.full_tree:
batch_candidates = opt_inputs.acq_function.extract_candidates(
X_full=batch_candidates
)
return batch_candidates, batch_acq_values
def optimize_acqf(
acq_function: AcquisitionFunction,
bounds: Tensor,
q: int,
num_restarts: int,
raw_samples: int | None = None,
options: dict[str, bool | float | int | str] | None = None,
inequality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
equality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
nonlinear_inequality_constraints: list[tuple[Callable, bool]] | None = None,
fixed_features: dict[int, float] | None = None,
post_processing_func: Callable[[Tensor], Tensor] | None = None,
batch_initial_conditions: Tensor | None = None,
return_best_only: bool = True,
gen_candidates: TGenCandidates | None = None,
sequential: bool = False,
*,
ic_generator: TGenInitialConditions | None = None,
timeout_sec: float | None = None,
return_full_tree: bool = False,
retry_on_optimization_warning: bool = True,
**ic_gen_kwargs: Any,
) -> tuple[Tensor, Tensor]:
r"""Generate a set of candidates via multi-start optimization.
Args:
acq_function: An AcquisitionFunction.
bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`
(if inequality_constraints is provided, these bounds can be -inf and
+inf, respectively).
q: The number of candidates.
num_restarts: The number of starting points for multistart acquisition
function optimization.
raw_samples: The number of samples for initialization. This is required
if `batch_initial_conditions` is not specified.
options: Options for candidate generation.
inequality_constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. `indices` and
`coefficients` should be torch tensors. See the docstring of
`make_scipy_linear_constraints` for an example. When q=1, or when
applying the same constraint to each candidate in the batch
(intra-point constraint), `indices` should be a 1-d tensor.
For inter-point constraints, in which the constraint is applied to the
whole batch of candidates, `indices` must be a 2-d tensor, where
in each row `indices[i] =(k_i, l_i)` the first index `k_i` corresponds
to the `k_i`-th element of the `q`-batch and the second index `l_i`
corresponds to the `l_i`-th feature of that element.
equality_constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an equality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) = rhs`. See the docstring of
`make_scipy_linear_constraints` for an example.
nonlinear_inequality_constraints: A list of tuples representing the nonlinear
inequality constraints. The first element in the tuple is a callable
representing a constraint of the form `callable(x) >= 0`. In case of an
intra-point constraint, `callable()`takes in an one-dimensional tensor of
shape `d` and returns a scalar. In case of an inter-point constraint,
`callable()` takes a two dimensional tensor of shape `q x d` and again
returns a scalar. The second element is a boolean, indicating if it is an
intra-point or inter-point constraint (`True` for intra-point. `False` for
inter-point). For more information on intra-point vs inter-point
constraints, see the docstring of the `inequality_constraints` argument to
`optimize_acqf()`. The constraints will later be passed to the scipy
solver. You need to pass in `batch_initial_conditions` in this case.
Using non-linear inequality constraints also requires that `batch_limit`
is set to 1, which will be done automatically if not specified in
`options`.
fixed_features: A map `{feature_index: value}` for features that
should be fixed to a particular value during generation. All indices
should be non-negative.
post_processing_func: A function that post-processes an optimization
result appropriately (i.e., according to `round-trip`
transformations).
batch_initial_conditions: A tensor to specify the initial conditions. Set
this if you do not want to use default initialization strategy.
return_best_only: If False, outputs the solutions corresponding to all
random restart initializations of the optimization.
gen_candidates: A callable for generating candidates (and their associated
acquisition values) given a tensor of initial conditions and an
acquisition function. Other common inputs include lower and upper bounds
and a dictionary of options, but refer to the documentation of specific
generation functions (e.g gen_candidates_scipy and gen_candidates_torch)
for method-specific inputs. Default: `gen_candidates_scipy`
sequential: If False, uses joint optimization, otherwise uses sequential
optimization.
ic_generator: Function for generating initial conditions. Not needed when
`batch_initial_conditions` are provided. Defaults to
`gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition
functions and `gen_batch_initial_conditions` otherwise. Must be specified
for nonlinear inequality constraints.
timeout_sec: Max amount of time optimization can run for.
return_full_tree: Return the full tree of optimizers of the previous
iteration.
retry_on_optimization_warning: Whether to retry candidate generation with a new
set of initial conditions when it fails with an `OptimizationWarning`.
ic_gen_kwargs: Additional keyword arguments passed to function specified by
`ic_generator`
Returns:
A two-element tuple containing
- A tensor of generated candidates. The shape is
-- `q x d` if `return_best_only` is True (default)
-- `num_restarts x q x d` if `return_best_only` is False
- a tensor of associated acquisition values. If `sequential=False`,
this is a `(num_restarts)`-dim tensor of joint acquisition values
(with explicit restart dimension if `return_best_only=False`). If
`sequential=True`, this is a `q`-dim tensor of expected acquisition
values conditional on having observed candidates `0,1,...,i-1`.
Example:
>>> # generate `q=2` candidates jointly using 20 random restarts
>>> # and 512 raw samples
>>> candidates, acq_value = optimize_acqf(qEI, bounds, 2, 20, 512)
>>> generate `q=3` candidates sequentially using 15 random restarts
>>> # and 256 raw samples
>>> qEI = qExpectedImprovement(model, best_f=0.2)
>>> bounds = torch.tensor([[0.], [1.]])
>>> candidates, acq_value_list = optimize_acqf(
>>> qEI, bounds, 3, 15, 256, sequential=True
>>> )
"""
# using a default of None simplifies unit testing
if gen_candidates is None:
gen_candidates = gen_candidates_scipy
opt_acqf_inputs = OptimizeAcqfInputs(
acq_function=acq_function,
bounds=bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options=options,
inequality_constraints=inequality_constraints,
equality_constraints=equality_constraints,
nonlinear_inequality_constraints=nonlinear_inequality_constraints,
fixed_features=fixed_features,
post_processing_func=post_processing_func,
batch_initial_conditions=batch_initial_conditions,
return_best_only=return_best_only,
gen_candidates=gen_candidates,
sequential=sequential,
ic_generator=ic_generator,
timeout_sec=timeout_sec,
return_full_tree=return_full_tree,
retry_on_optimization_warning=retry_on_optimization_warning,
ic_gen_kwargs=ic_gen_kwargs,
)
return _optimize_acqf(opt_inputs=opt_acqf_inputs)
def _optimize_acqf(opt_inputs: OptimizeAcqfInputs) -> tuple[Tensor, Tensor]:
# Handle the trivial case when all features are fixed
if (
opt_inputs.fixed_features is not None
and len(opt_inputs.fixed_features) == opt_inputs.bounds.shape[-1]
):
return _optimize_acqf_all_features_fixed(
bounds=opt_inputs.bounds,
fixed_features=opt_inputs.fixed_features,
q=opt_inputs.q,
acq_function=opt_inputs.acq_function,
)
# Perform sequential optimization via successive conditioning on pending points
if opt_inputs.sequential and opt_inputs.q > 1:
return _optimize_acqf_sequential_q(opt_inputs=opt_inputs)
# Batch optimization (including the case q=1)
return _optimize_acqf_batch(opt_inputs=opt_inputs)
def optimize_acqf_cyclic(
acq_function: AcquisitionFunction,
bounds: Tensor,
q: int,
num_restarts: int,
raw_samples: int | None = None,
options: dict[str, bool | float | int | str] | None = None,
inequality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
equality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
fixed_features: dict[int, float] | None = None,
post_processing_func: Callable[[Tensor], Tensor] | None = None,
batch_initial_conditions: Tensor | None = None,
cyclic_options: dict[str, bool | float | int | str] | None = None,
*,
ic_generator: TGenInitialConditions | None = None,
timeout_sec: float | None = None,
return_full_tree: bool = False,
retry_on_optimization_warning: bool = True,
**ic_gen_kwargs: Any,
) -> tuple[Tensor, Tensor]:
r"""Generate a set of `q` candidates via cyclic optimization.
Args:
acq_function: An AcquisitionFunction
bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`
(if inequality_constraints is provided, these bounds can be -inf and
+inf, respectively).
q: The number of candidates.
num_restarts: Number of starting points for multistart acquisition
function optimization.
raw_samples: Number of samples for initialization. This is required
if `batch_initial_conditions` is not specified.
options: Options for candidate generation.
inequality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) >= rhs`
equality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) = rhs`
fixed_features: A map `{feature_index: value}` for features that
should be fixed to a particular value during generation. All indices
should be non-negative.
post_processing_func: A function that post-processes an optimization
result appropriately (i.e., according to `round-trip`
transformations).
batch_initial_conditions: A tensor to specify the initial conditions.
If no initial conditions are provided, the default initialization will
be used.
cyclic_options: Options for stopping criterion for outer cyclic optimization.
ic_generator: Function for generating initial conditions. Not needed when
`batch_initial_conditions` are provided. Defaults to
`gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition
functions and `gen_batch_initial_conditions` otherwise. Must be specified
for nonlinear inequality constraints.
timeout_sec: Max amount of time optimization can run for.
return_full_tree: Return the full tree of optimizers of the previous
iteration.
retry_on_optimization_warning: Whether to retry candidate generation with a new
set of initial conditions when it fails with an `OptimizationWarning`.
ic_gen_kwargs: Additional keyword arguments passed to function specified by
`ic_generator`
Returns:
A two-element tuple containing
- a `q x d`-dim tensor of generated candidates.
- a `q`-dim tensor of expected acquisition values, where the value at
index `i` is the acquisition value conditional on having observed
all candidates except candidate `i`.
Example:
>>> # generate `q=3` candidates cyclically using 15 random restarts
>>> # 256 raw samples, and 4 cycles
>>>
>>> qEI = qExpectedImprovement(model, best_f=0.2)
>>> bounds = torch.tensor([[0.], [1.]])
>>> candidates, acq_value_list = optimize_acqf_cyclic(
>>> qEI, bounds, 3, 15, 256, cyclic_options={"maxiter": 4}
>>> )
"""
opt_inputs = OptimizeAcqfInputs(
acq_function=acq_function,
bounds=bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options=options,
inequality_constraints=inequality_constraints,
equality_constraints=equality_constraints,
nonlinear_inequality_constraints=None,
fixed_features=fixed_features,
post_processing_func=post_processing_func,
batch_initial_conditions=batch_initial_conditions,
return_best_only=True,
gen_candidates=gen_candidates_scipy,
sequential=True,
ic_generator=ic_generator,
timeout_sec=timeout_sec,
return_full_tree=return_full_tree,
retry_on_optimization_warning=retry_on_optimization_warning,
ic_gen_kwargs=ic_gen_kwargs,
)
# for the first cycle, optimize the q candidates sequentially
candidates, acq_vals = _optimize_acqf(opt_inputs)
q = opt_inputs.q
opt_inputs = dataclasses.replace(opt_inputs, q=1)
acq_function = opt_inputs.acq_function
if q > 1:
cyclic_options = cyclic_options or {}
stopping_criterion = ExpMAStoppingCriterion(**cyclic_options)
stop = stopping_criterion.evaluate(fvals=acq_vals)
base_X_pending = acq_function.X_pending
idxr = torch.ones(q, dtype=torch.bool, device=opt_inputs.bounds.device)
while not stop:
for i in range(q):
# optimize only candidate i
idxr[i] = 0
acq_function.set_X_pending(
torch.cat([base_X_pending, candidates[idxr]], dim=-2)
if base_X_pending is not None
else candidates[idxr]
)
opt_inputs = dataclasses.replace(
opt_inputs,
batch_initial_conditions=candidates[i].unsqueeze(0),
sequential=False,
)
candidate_i, acq_val_i = _optimize_acqf(opt_inputs)
candidates[i] = candidate_i
acq_vals[i] = acq_val_i
idxr[i] = 1
stop = stopping_criterion.evaluate(fvals=acq_vals)
acq_function.set_X_pending(base_X_pending)
return candidates, acq_vals
def optimize_acqf_list(
acq_function_list: list[AcquisitionFunction],
bounds: Tensor,
num_restarts: int,
raw_samples: int | None = None,
options: dict[str, bool | float | int | str] | None = None,
inequality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
equality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
nonlinear_inequality_constraints: list[tuple[Callable, bool]] | None = None,
fixed_features: dict[int, float] | None = None,
fixed_features_list: list[dict[int, float]] | None = None,
post_processing_func: Callable[[Tensor], Tensor] | None = None,
ic_generator: TGenInitialConditions | None = None,
ic_gen_kwargs: dict | None = None,
) -> tuple[Tensor, Tensor]:
r"""Generate a list of candidates from a list of acquisition functions.
The acquisition functions are optimized in sequence, with previous candidates
set as `X_pending`. This is also known as sequential greedy optimization.
Args:
acq_function_list: A list of acquisition functions.
bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`
(if inequality_constraints is provided, these bounds can be -inf and
+inf, respectively).
num_restarts: Number of starting points for multistart acquisition
function optimization.
raw_samples: Number of samples for initialization. This is required
if `batch_initial_conditions` is not specified.
options: Options for candidate generation.
inequality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) >= rhs`
equality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) = rhs`
nonlinear_inequality_constraints: A list of tuples representing the nonlinear
inequality constraints. The first element in the tuple is a callable
representing a constraint of the form `callable(x) >= 0`. In case of an
intra-point constraint, `callable()`takes in an one-dimensional tensor of
shape `d` and returns a scalar. In case of an inter-point constraint,
`callable()` takes a two dimensional tensor of shape `q x d` and again
returns a scalar. The second element is a boolean, indicating if it is an
intra-point or inter-point constraint (`True` for intra-point. `False` for
inter-point). For more information on intra-point vs inter-point
constraints, see the docstring of the `inequality_constraints` argument to
`optimize_acqf()`. The constraints will later be passed to the scipy
solver. You need to pass in `batch_initial_conditions` in this case.
Using non-linear inequality constraints also requires that `batch_limit`
is set to 1, which will be done automatically if not specified in
`options`.
fixed_features: A map `{feature_index: value}` for features that should
be fixed to a particular value during generation. All indices
(`feature_index`) should be non-negative.
fixed_features_list: A list of maps `{feature_index: value}`. The i-th
item represents the fixed_feature for the i-th optimization. If
`fixed_features_list` is provided, `optimize_acqf_mixed` is invoked.
All indices (`feature_index`) should be non-negative.
post_processing_func: A function that post-processes an optimization
result appropriately (i.e., according to `round-trip`
transformations).
ic_generator: Function for generating initial conditions. Not needed when
`batch_initial_conditions` are provided. Defaults to
`gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition
functions and `gen_batch_initial_conditions` otherwise. Must be specified
for nonlinear inequality constraints.
ic_gen_kwargs: Additional keyword arguments passed to function specified by
`ic_generator`
Returns:
A two-element tuple containing
- a `q x d`-dim tensor of generated candidates.
- a `q`-dim tensor of expected acquisition values, where the value at
index `i` is the acquisition value conditional on having observed
all candidates except candidate `i`.
"""
if fixed_features and fixed_features_list:
raise ValueError(
"Èither `fixed_feature` or `fixed_features_list` can be provided, not both."
)
if not acq_function_list:
raise ValueError("acq_function_list must be non-empty.")
candidate_list, acq_value_list = [], []
candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype)
base_X_pending = acq_function_list[0].X_pending
for acq_function in acq_function_list:
if candidate_list:
acq_function.set_X_pending(
torch.cat([base_X_pending, candidates], dim=-2)
if base_X_pending is not None
else candidates
)
if fixed_features_list:
candidate, acq_value = optimize_acqf_mixed(
acq_function=acq_function,
bounds=bounds,
q=1,
num_restarts=num_restarts,
raw_samples=raw_samples,
options=options or {},
inequality_constraints=inequality_constraints,
equality_constraints=equality_constraints,
nonlinear_inequality_constraints=nonlinear_inequality_constraints,
fixed_features_list=fixed_features_list,
post_processing_func=post_processing_func,
ic_generator=ic_generator,
ic_gen_kwargs=ic_gen_kwargs,
)
else:
ic_gen_kwargs = ic_gen_kwargs or {}
candidate, acq_value = optimize_acqf(
acq_function=acq_function,
bounds=bounds,
q=1,
num_restarts=num_restarts,
raw_samples=raw_samples,
options=options or {},
inequality_constraints=inequality_constraints,
equality_constraints=equality_constraints,
nonlinear_inequality_constraints=nonlinear_inequality_constraints,
fixed_features=fixed_features,
post_processing_func=post_processing_func,
return_best_only=True,
sequential=False,
ic_generator=ic_generator,
**ic_gen_kwargs,
)
candidate_list.append(candidate)
acq_value_list.append(acq_value)
candidates = torch.cat(candidate_list, dim=-2)
return candidates, torch.stack(acq_value_list)
def optimize_acqf_mixed(
acq_function: AcquisitionFunction,
bounds: Tensor,
q: int,
num_restarts: int,
fixed_features_list: list[dict[int, float]],
raw_samples: int | None = None,
options: dict[str, bool | float | int | str] | None = None,
inequality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
equality_constraints: list[tuple[Tensor, Tensor, float]] | None = None,
nonlinear_inequality_constraints: list[tuple[Callable, bool]] | None = None,
post_processing_func: Callable[[Tensor], Tensor] | None = None,
batch_initial_conditions: Tensor | None = None,
return_best_only: bool = True,
gen_candidates: TGenCandidates | None = None,
ic_generator: TGenInitialConditions | None = None,
timeout_sec: float | None = None,
retry_on_optimization_warning: bool = True,
ic_gen_kwargs: dict | None = None,
) -> tuple[Tensor, Tensor]:
r"""Optimize over a list of fixed_features and returns the best solution.
This is useful for optimizing over mixed continuous and discrete domains.
For q > 1 this function always performs sequential greedy optimization (with
proper conditioning on generated candidates).
Args:
acq_function: An AcquisitionFunction
bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`
(if inequality_constraints is provided, these bounds can be -inf and
+inf, respectively).
q: The number of candidates.
num_restarts: Number of starting points for multistart acquisition
function optimization.
raw_samples: Number of samples for initialization. This is required
if `batch_initial_conditions` is not specified.
fixed_features_list: A list of maps `{feature_index: value}`. The i-th
item represents the fixed_feature for the i-th optimization. All
indices (`feature_index`) should be non-negative.
options: Options for candidate generation.
inequality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) >= rhs`
equality constraints: A list of tuples (indices, coefficients, rhs),
with each tuple encoding an inequality constraint of the form
`\sum_i (X[indices[i]] * coefficients[i]) = rhs`
nonlinear_inequality_constraints: A list of tuples representing the nonlinear
inequality constraints. The first element in the tuple is a callable
representing a constraint of the form `callable(x) >= 0`. In case of an