-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
98 lines (89 loc) · 3.83 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
from typing import Tuple
import torch
from torchmetrics.classification import MulticlassAccuracy, MulticlassF1Score, MulticlassAUROC
from tqdm import tqdm
from config.config import config
from dataset.dataset import build_dataloader
from model.lightning import BuildLightningModel
def load_model(model_path: str) -> torch.nn.Module:
try:
model = BuildLightningModel.load_from_checkpoint(os.path.join(model_path)).model
# remove model. prefix
state_dict = {k.replace('model.', ''): v for k, v in model.state_dict().items()}
model.load_state_dict(state_dict)
print('[Info] Load model from {}'.format(model_path))
except Exception as e:
print('[Error] Load model failed, error message: {}'.format(e))
exit(1)
return model
def inference(config: dict, model_path: str, cross_val_dataset_name: str, device: torch.device) -> Tuple[
float, float, float]:
dataloader = build_dataloader(config, mode='test', cross_val_name=cross_val_dataset_name)
model = load_model(model_path).to(device)
model.eval()
# init metrics
accuracy = MulticlassAccuracy(num_classes=len(config['type_list'])).to(device)
f1_score = MulticlassF1Score(num_classes=len(config['type_list'])).to(device)
auroc = MulticlassAUROC(num_classes=len(config['type_list'])).to(device)
with torch.no_grad():
for batch in tqdm(dataloader, ncols=100):
spectrum, label, data_id = batch
spectrum = spectrum.to(device)
label = label.to(device)
output = model(spectrum)
# metrics
accuracy(output, label)
f1_score(output, label)
auroc(output, label)
_accuracy = accuracy.compute().item()
_f1_score = f1_score.compute().item()
_auroc = auroc.compute().item()
print('[Info] For cross validation dataset: {}'.format(cross_val_dataset_name))
print('[Info] Accuracy: {:.4f}'.format(_accuracy))
print('[Info] F1 score: {:.4f}'.format(_f1_score))
print('[Info] AUROC: {:.4f}'.format(_auroc))
# release memory
del model
return _accuracy, _f1_score, _auroc
if __name__ == '__main__':
model_save_path = {
'kfold_0': './',
'kfold_1': './',
'kfold_2': './',
'kfold_3': './',
'kfold_4': './',
}
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
avg_accuracy = 0
avg_f1_score = 0
avg_auroc = 0
acc_list = []
f1_list = []
auroc_list = []
for cross_val_dataset_name, model_path in model_save_path.items():
_acc, _f1, _auroc = inference(config, model_path, cross_val_dataset_name, device)
avg_accuracy += _acc
avg_f1_score += _f1
avg_auroc += _auroc
acc_list.append(_acc)
f1_list.append(_f1)
auroc_list.append(_auroc)
avg_accuracy /= len(model_save_path)
avg_f1_score /= len(model_save_path)
avg_auroc /= len(model_save_path)
print('=' * 100)
print('[Info] Average accuracy: {:.4f}'.format(avg_accuracy))
print('[Info] Average F1 score: {:.4f}'.format(avg_f1_score))
print('[Info] Average AUROC: {:.4f}'.format(avg_auroc))
print('[Info] Accuracy list: {}'.format(acc_list))
print('[Info] F1 score list: {}'.format(f1_list))
print('[Info] AUROC list: {}'.format(auroc_list))
# save as result.txt
with open('result.txt', 'w') as f:
f.write('Average accuracy: {:.4f}\n'.format(avg_accuracy))
f.write('Average F1 score: {:.4f}\n'.format(avg_f1_score))
f.write('Average AUROC: {:.4f}\n'.format(avg_auroc))
f.write('Accuracy list: {}\n'.format(['{:.4f}'.format(i) for i in acc_list]))
f.write('F1 score list: {}\n'.format(['{:.4f}'.format(i) for i in f1_list]))
f.write('AUROC list: {}\n'.format(['{:.4f}'.format(i) for i in auroc_list]))