-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathvqe_rf.py
273 lines (222 loc) · 11.3 KB
/
vqe_rf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import pickle
import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
from qiskit import QuantumCircuit, transpile
from qiskit.algorithms.minimum_eigensolvers import VQE
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import TwoLocal
from qiskit.opflow import I, X, Z, Y
from qiskit.primitives import BackendEstimator, Estimator
from qiskit.providers.fake_provider import FakeLima
from qiskit.quantum_info import Operator
from qiskit.quantum_info import SparsePauliOp
from qiskit.result import marginal_counts
from qiskit_aer import AerSimulator
from qiskit_aer import QasmSimulator
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
from blackwater.data.utils import encode_pauli_sum_op
from blackwater.data.utils import get_backend_properties_v1
from blackwater.library.learning.estimator import learning, ScikitLearningModelProcessor
from mlp import encode_data
qasm_sim = QasmSimulator()
backend = FakeLima()
properties = get_backend_properties_v1(backend)
backend_ideal = QasmSimulator() # Noiseless
backend_noisy = AerSimulator.from_backend(backend) # Noisy
run_config_ideal = {'shots': 10000, 'backend': backend_ideal, 'name': 'ideal'}
run_config_noisy = {'shots': 10000, 'backend': backend_noisy, 'name': 'noisy'}
NUM_QUBITS = 2
def fix_random_seed(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print(f'random seed fixed to {seed}')
def get_all_z_exp_wo_shot_noise(circuit, marginal_over=None):
circuit_copy = circuit.copy()
circuit_copy.remove_final_measurements()
circuit_copy.save_density_matrix()
def int_to_bin(n, num_bits=4):
if n < 2 ** num_bits:
binary_str = bin(n)[2:]
return binary_str.zfill(num_bits)
else:
raise ValueError
circuit_copy = transpile(circuit_copy, backend=backend_noisy, optimization_level=3)
job = qasm_sim.run(circuit_copy)
# job = execute(circuit_copy, QasmSimulator(), backend_options={'method': 'statevector'})
probs = np.real(np.diag(job.result().results[0].data.density_matrix))
probs = {int_to_bin(i, num_bits=NUM_QUBITS): p for i, p in enumerate(probs)}
if marginal_over:
probs = marginal_counts(probs, indices=marginal_over)
exp_val = 0
for key, prob in probs.items():
num_ones = key.count('1')
exp_val += (-1) ** num_ones * prob
return exp_val
def load_circuits(data_dir, f_ext='.json', specific_file=None):
circuits = []
trans_circuits = []
ideal_exp_vals = []
noisy_exp_vals = []
meas_basis = []
data_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(f_ext)] if specific_file is None else [specific_file]
for data_file in tqdm(data_files, leave=True):
if f_ext == '.json':
for entry in json.load(open(data_file, 'r')):
circuits.append(QuantumCircuit.from_qasm_str(entry['circuit']))
ideal_exp_vals.append(entry['ideal_exp_value'])
noisy_exp_vals.append(entry['noisy_exp_values'])
elif f_ext == '.pk':
for entry in pickle.load(open(data_file, 'rb')):
circuits.append(entry['circuit'])
trans_circuits.append(entry['trans_circuit'])
ideal_exp_vals.append(entry['ideal_exp_value'])
noisy_exp_vals.append(entry['noisy_exp_values'])
meas_basis.append(entry['meas_basis'])
return trans_circuits, ideal_exp_vals, noisy_exp_vals, meas_basis
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
circuits, ideal_exp_vals, noisy_exp_vals, meas_bases = load_circuits('./data/vqe/', '.pk', specific_file='./data/vqe/two_local_2q_3reps_oplev0_rycz_20240717.pk')
print(len(circuits))
sep = 8999
train_circuits, train_ideal_exp_vals, train_noisy_exp_vals, train_meas_bases = circuits[:sep], ideal_exp_vals[:sep], \
noisy_exp_vals[:sep], meas_bases[:sep]
test_circuits, test_ideal_exp_vals, test_noisy_exp_vals, test_meas_bases = circuits[sep:], ideal_exp_vals[sep:], \
noisy_exp_vals[sep:], meas_bases[sep:]
print(len(train_circuits))
#################################################################################
train_observables = [encode_pauli_sum_op(SparsePauliOp(basis))[0] for basis in train_meas_bases]
test_observables = [encode_pauli_sum_op(SparsePauliOp(basis))[0] for basis in test_meas_bases]
X_train, y_train = encode_data(train_circuits, properties, train_ideal_exp_vals, train_noisy_exp_vals, num_qubits=1,
meas_bases=train_observables)
X_test, y_test = encode_data(test_circuits, properties, test_ideal_exp_vals, test_noisy_exp_vals, num_qubits=1,
meas_bases=test_observables)
print(len(X_test[0]), 54 + 1 + len(test_observables[0]))
#################################################################################
BATCH_SIZE = 32
fix_random_seed(0)
test_dataset = TensorDataset(torch.Tensor(X_test), torch.Tensor(y_test))
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE * 1000, shuffle=False)
#################################################################################
print(train_circuits[0].count_ops())
# train_circuits[0].decompose().draw('mpl', fold=-1, idle_wires=False).show()
#################################################################################
from sklearn.ensemble import RandomForestRegressor
rfr = RandomForestRegressor(n_estimators=300)
rfr.fit(X_train, y_train)
#################################################################################
fix_random_seed(0)
distances = []
num_spins = 1
for batch_X, batch_y in test_loader:
out = rfr.predict(batch_X)
for ideal, noisy, ngm_mitigated in zip(
batch_y.tolist(),
batch_X[:, 54].tolist(),
out.tolist()
):
for q in range(num_spins):
ideal_q = ideal[q]
noisy_q = noisy
ngm_mitigated_q = ngm_mitigated
distances.append({
"num_train_samples": sep,
f"ideal_{q}": ideal_q,
f"noisy_{q}": noisy_q,
f"ngm_mitigated_{q}": ngm_mitigated_q,
f"dist_noisy_{q}": np.abs(ideal_q - noisy_q),
f"dist_mitigated_{q}": np.abs(ideal_q - ngm_mitigated_q),
f"dist_sq_noisy_{q}": np.square(ideal_q - noisy_q),
f"dist_sq_mitigated_{q}": np.square(ideal_q - ngm_mitigated_q),
})
plt.style.use({'figure.facecolor': 'white'})
df = pd.DataFrame(distances)
for q in range(num_spins):
print(f'RMSE_noisy_{q}:', np.sqrt(df[f"dist_sq_noisy_{q}"].mean()))
print(f'RMSE_mitigated_{q}:', np.sqrt(df[f"dist_sq_mitigated_{q}"].mean()))
print(f'RMSE_noisy:', np.sqrt(np.mean([df[f"dist_sq_noisy_{q}"].mean() for q in range(num_spins)])))
print(f'RMSE_mitigated:', np.sqrt(np.mean([df[f"dist_sq_mitigated_{q}"].mean() for q in range(num_spins)])))
# sns.boxplot(data=df[["dist_noisy_0", "dist_mitigated_0"]], orient="h", showfliers=False)
# plt.title("Dist to ideal exp value")
# plt.show()
# sns.histplot([df['ideal_0'], df['noisy_0'], df["ngm_mitigated_0"]], kde=True, bins=40)
# plt.title("Exp values distribution")
# # plt.xlim([-0.2, 0.2])
# plt.show()
#################################################################################
fix_random_seed(0)
processor = ScikitLearningModelProcessor(
model=rfr,
backend=backend_noisy
)
##################################################################################
str2opflow = {'I': I, 'X': X, 'Y': Y, 'Z': Z}
coefficient = [0.1, 0.3, 0.7] #[0.2, 0.4, 0.4]
operator_components = ['XX', 'ZZ', 'ZI']
# num_ops_total, num_ops_from_train = 2, 2
# coefficient = np.random.normal(0, 1, num_ops_total)
# operator_components = np.random.choice(train_meas_bases, size=num_ops_from_train).tolist() + np.random.choice(test_meas_bases, size=num_ops_total-num_ops_from_train).tolist()
print(operator_components)
operator_components_opflow = []
for op_component in operator_components:
op_f = 1
for op_str in list(op_component):
# op_f = str2opflow[op_str] ^ op_f
op_f = op_f ^ str2opflow[op_str]
operator_components_opflow.append(op_f)
operator = np.dot(coefficient, operator_components_opflow)
operator = SparsePauliOp.from_operator(operator)
print(operator)
#########################################################################################
##########################################################################################
# fix_random_seed(0)
def callback_func(lst, values, params):
print(f'Values: {values}', f'Params: {params}')
lst.append(values)
optimizer = COBYLA(maxiter=100)
ansatz = TwoLocal(num_qubits=NUM_QUBITS, rotation_blocks="ry", entanglement_blocks="cz", reps=3)
# init_pt = np.random.uniform(-5, 5, ansatz.num_parameters)
init_pt = np.ones(ansatz.num_parameters)
learning_estimator = learning(BackendEstimator, processor=processor, backend=FakeLima(), skip_transpile=True)
estimator_mitigated = learning_estimator(backend=FakeLima())
history_mitigated = []
vqe = VQE(estimator=estimator_mitigated, ansatz=ansatz, optimizer=optimizer, initial_point=init_pt,
callback=lambda a, params, values, d: callback_func(history_mitigated, values, params))
result_mitigated = vqe.compute_minimum_eigenvalue(operator, separate_observables=True)
##########################################################################################
# fix_random_seed(0)
estimator_ideal = Estimator()
history_ideal = []
vqe = VQE(estimator=estimator_ideal, ansatz=ansatz, optimizer=optimizer, initial_point=init_pt,
callback=lambda a, params, values, d: callback_func(history_ideal, values, params))
result_ideal = vqe.compute_minimum_eigenvalue(operator)
##########################################################################################
# fix_random_seed(0)
estimator_noisy = BackendEstimator(backend=FakeLima())
history_noisy = []
vqe = VQE(estimator=estimator_noisy, ansatz=ansatz, optimizer=optimizer, initial_point=init_pt,
callback=lambda a, params, values, d: callback_func(history_noisy, values, params))
result_noisy = vqe.compute_minimum_eigenvalue(operator)
##########################################################################################
print('#' * 50)
print("Noisy", result_noisy.optimal_value)
print("Mitigated", result_mitigated.optimal_value)
print("Ideal", result_ideal.optimal_value)
print("Diagonalization", min(np.real_if_close(np.linalg.eig(Operator(operator))[0])))
sns.lineplot(history_ideal, label='ideal')
sns.lineplot(history_mitigated, label='mitigated')
sns.lineplot(history_noisy, label='noisy')
plt.legend()
plt.show()