-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_cpg.py
83 lines (65 loc) · 2.95 KB
/
example_cpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# coding: utf-8
import os
import random
from dataclasses import dataclass
import numpy as np
import torch
from torch_geometric.nn import GNNExplainer
from ga_subgraph.utils import extract_node_from_mask
from visualization.plot import aggregate_figures
from ga_subgraph.explainer import GASubX
from ga_subgraph.fitness import classifier
from ga_subgraph.individual import Individual
from vulexp.data_models.reveal_data import Reveal
from vulexp.explanation.subgraphx import SubgraphX
@dataclass
class Args:
seed: int = 27 # Random seed.
to_undirected = False
gtype = 'cpg' # cpg or smg
over_write = False
CXPB = 0.55
MUTPB = 0.25
tournsize = 11
subgraph_building_method = "zero_filling"
n_generation = 150
args = Args()
rng = np.random.default_rng(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
data_dir = 'data/reveal/'
absolute_path = os.getcwd()
reveal_dataset = Reveal(data_dir, absolute_path=absolute_path,
over_write=args.over_write, to_undirected=args.to_undirected,
seed=args.seed, gtype=args.gtype)
reveal_train, reveal_val, reveal_test = reveal_dataset.generate_train_test()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from vulexp.ml_models.pl_train_module_logit import TrainingModule
from vulexp.ml_models.gin import GIN
saved_model = TrainingModule.load_from_checkpoint(model=GIN, map_location=device,
checkpoint_path="solo_train/202301171249_88cc311_add_click/checkpoint/GIN_CPG-epoch=04-loss=0.57-f1=0.29189189189189185.ckpt")
saved_model.to(device)
saved_model.eval()
sel = 3
k_node = 6
print(f'select sample #{sel}')
print(f'constraint node #{k_node}')
foo_sample = reveal_test.get(sel)
output = saved_model(foo_sample.x.to(device), foo_sample.edge_index.to(device), None)
pred = torch.sigmoid(output).item()
print(pred, foo_sample.y, foo_sample.num_nodes)
ga_explainer = GASubX(saved_model, classifier, device, Individual, args.n_generation, args.CXPB, args.MUTPB,
args.tournsize, args.subgraph_building_method)
ga_subgraph, _ = ga_explainer.explain(foo_sample, k_node, verbose=False)
print('GASubX', ga_subgraph)
subgraphx = SubgraphX(model=saved_model, min_nodes=5, n_rollout=args.n_generation)
subgraph = subgraphx.explain(x=foo_sample.x.to(device), edge_index=foo_sample.edge_index.to(device), max_nodes=k_node)
print('SubgraphX', subgraph.coalition)
gnn_explainer = GNNExplainer(saved_model, epochs=args.n_generation, return_type='raw', log=False)
_, gnn_edge_mask = gnn_explainer.explain_graph(foo_sample.x.to(device), foo_sample.edge_index.to(device), batch=None)
gnn_explainer_nodes = extract_node_from_mask(gnn_edge_mask, k_node, foo_sample)
print('gnnexplainer', gnn_explainer_nodes)
aggregate_figures(foo_sample, ga_subgraph, list(subgraph.coalition), gnn_explainer_nodes,
sel, pred, saved_model, device)