-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_index_azure.py
52 lines (43 loc) · 1.63 KB
/
build_index_azure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
from llama_index import LLMPredictor, VectorStoreIndex, SimpleDirectoryReader, ServiceContext, LangchainEmbedding
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import AzureOpenAI
import openai
import logging
import sys
#llamaindex logs
logging.basicConfig(stream=sys.stdout, level=logging.INFO) # logging.DEBUG for more verbose output
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
#Enable to show openai logs
#openai.log='debug'
#Based on your settings, see version, base, key in your Azure AI portal
api_type = "azure"
api_version = "2023-03-15-preview"
api_base = os.getenv("AZURE_API_BASE")
api_key = os.getenv("AZURE_API_KEY")
chat_deployment = "gpt35"
embedding_deployment= "text-embedding-ada-002"
# Chat model
llm = AzureOpenAI(deployment_name=chat_deployment, openai_api_base=api_base, openai_api_key=api_key, model_kwargs={
"api_type": api_type,
"api_version": api_version,
})
llm_predictor = LLMPredictor(llm=llm)
# Embedding model
embedding_llm = LangchainEmbedding(
OpenAIEmbeddings(
model=embedding_deployment,
deployment=embedding_deployment,
openai_api_key=api_key,
openai_api_base=api_base,
openai_api_type=api_type,
openai_api_version=api_version,
),
embed_batch_size=1
)
#load docs
documents = SimpleDirectoryReader('local-data').load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embedding_llm)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir="local-index-azure")
print("Saved embeddings")