From 4d9b02170351ae6725c28a34d0d2f808e67068c2 Mon Sep 17 00:00:00 2001 From: range3 Date: Thu, 3 Oct 2024 10:39:20 +0000 Subject: [PATCH] Add rdbench-viz.py --- rdbench-viz/rdbench-viz.py | 88 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 rdbench-viz/rdbench-viz.py diff --git a/rdbench-viz/rdbench-viz.py b/rdbench-viz/rdbench-viz.py new file mode 100644 index 0000000..cafaeb6 --- /dev/null +++ b/rdbench-viz/rdbench-viz.py @@ -0,0 +1,88 @@ +import argparse +from pathlib import Path +import struct +import math +import numpy as np +from PIL import Image, ImageDraw +from tqdm import tqdm +# import matplotlib.pyplot as plt +import matplotlib.cm as cm +from matplotlib.colors import LinearSegmentedColormap + + +def read_dat(file: Path): + ar = np.array(struct.unpack(f'{file.stat().st_size // 8}d', file.read_bytes())) + return ar.reshape((int(math.sqrt(ar.shape[0])), -1)) + +def create_frame_image(data, cmap = "Blues", frame_number = None): + """フレームデータを画像に変換し、カラーマップを適用""" + # Normalize data for visualization + normalized_data = (data - data.min()) / (data.max() - data.min()) + + # Apply colormap using matplotlib + if cmap == 'PastelReds': # Custom pastel-like Reds colormap + colors = [(1, 1, 1), (1, 0.8, 0.8), (1, 0, 0)] # white -> pink -> red + colormap = LinearSegmentedColormap.from_list("PastelReds", colors, N=256) + else: + colormap = cm.get_cmap(cmap) + + colored_data = colormap(normalized_data) # This returns an (M, N, 4) array with RGBA values + + # Convert the RGBA colormap array to RGB (dropping the alpha channel) + rgb_data = (colored_data[:, :, :3] * 255).astype(np.uint8) + + # Convert numpy array to RGB image + img = Image.fromarray(rgb_data, 'RGB') + + # Draw the frame number on the image + # draw = ImageDraw.Draw(img) + # draw.text((10, 10), f'Frame {frame_number}', fill=(255, 255, 255)) # Use white color for text in RGB mode + return img + +def generate_gif(input_dir, output_file, initial_duration, frame_duration, cmap, verbose): + input_files = sorted(list(Path(input_dir).glob('*.bin'))) + + if not input_files: + print(f"No binary files found in directory: {input_dir}") + return + + # Initialize the list to store the images (frames) + images = [] + + if verbose: + print(f"Processing {len(input_files)} files...") + + # Process each file + for i, file in enumerate(tqdm(input_files, desc="Processing files", disable=not verbose)): + data = read_dat(file) + img = create_frame_image(data, cmap, i) + images.append(img) + + # Save the images as a GIF + if verbose: + print(f"Saving GIF to {output_file}...") + + images[0].save( + output_file, save_all=True, append_images=images[1:], + duration=[initial_duration] + [frame_duration] * (len(images) - 1), + loop=0 + ) + + if verbose: + print(f"GIF saved successfully: {output_file}") + +def main(): + parser = argparse.ArgumentParser(description="Create an animated GIF from binary data files.") + parser.add_argument("input", type=str, help="Input directory containing .bin files") + parser.add_argument("output", type=str, help="Output GIF file") + parser.add_argument("--initial_duration", type=int, default=1000, help="Duration of the initial frame in milliseconds") + parser.add_argument("--frame_duration", type=int, default=100, help="Duration of each frame in milliseconds") + parser.add_argument("--cmap", type=str, default="Blues", help="Colormap to use for the frames (default: Blues)") + parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose output with progress") + + args = parser.parse_args() + + generate_gif(args.input, args.output, args.initial_duration, args.frame_duration, args.cmap, args.verbose) + +if __name__ == "__main__": + main()