-
-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathregression.py
1330 lines (1109 loc) · 50.9 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import itertools
import warnings
import numpy as np
import pandas as pd
import pandas_flavor as pf
from scipy.stats import t, norm
from scipy.linalg import pinvh, lstsq
from pingouin.config import options
from pingouin.utils import remove_na as rm_na
from pingouin.utils import _flatten_list as _fl
from pingouin.utils import _postprocess_dataframe
__all__ = ["linear_regression", "logistic_regression", "mediation_analysis"]
def linear_regression(
X,
y,
add_intercept=True,
weights=None,
coef_only=False,
alpha=0.05,
as_dataframe=True,
remove_na=False,
relimp=False,
):
"""(Multiple) Linear regression.
Parameters
----------
X : array_like
Predictor(s), of shape *(n_samples, n_features)* or *(n_samples)*.
y : array_like
Dependent variable, of shape *(n_samples)*.
add_intercept : bool
If False, assume that the data are already centered. If True, add a
constant term to the model. In this case, the first value in the
output dict is the intercept of the model.
.. note:: It is generally recommended to include a constant term
(intercept) to the model to limit the bias and force the residual
mean to equal zero. The intercept coefficient and p-values
are however rarely meaningful.
weights : array_like
An optional vector of sample weights to be used in the fitting
process, of shape *(n_samples)*. Missing or negative weights are not
allowed. If not null, a weighted least squares is calculated.
.. versionadded:: 0.3.5
coef_only : bool
If True, return only the regression coefficients.
alpha : float
Alpha value used for the confidence intervals.
:math:`\\text{CI} = [\\alpha / 2 ; 1 - \\alpha / 2]`
as_dataframe : bool
If True, returns a pandas DataFrame. If False, returns a dictionnary.
remove_na : bool
If True, apply a listwise deletion of missing values (i.e. the entire
row is removed). Default is False, which will raise an error if missing
values are present in either the predictor(s) or dependent
variable.
relimp : bool
If True, returns the relative importance (= contribution) of
predictors. This is irrelevant when the predictors are uncorrelated:
the total :math:`R^2` of the model is simply the sum of each univariate
regression :math:`R^2`-values. However, this does not apply when
predictors are correlated. Instead, the total :math:`R^2` of the model
is partitioned by averaging over all combinations of predictors,
as done in the `relaimpo
<https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf>`_
R package (``calc.relimp(type="lmg")``).
.. warning:: The computation time roughly doubles for each
additional predictor and therefore this can be extremely slow for
models with more than 12-15 predictors.
.. versionadded:: 0.3.0
Returns
-------
stats : :py:class:`pandas.DataFrame` or dict
Linear regression summary:
* ``'names'``: name of variable(s) in the model (e.g. x1, x2...)
* ``'coef'``: regression coefficients
* ``'se'``: standard errors
* ``'T'``: T-values
* ``'pval'``: p-values
* ``'r2'``: coefficient of determination (:math:`R^2`)
* ``'adj_r2'``: adjusted :math:`R^2`
* ``'CI[2.5%]'``: lower confidence intervals
* ``'CI[97.5%]'``: upper confidence intervals
* ``'relimp'``: relative contribution of each predictor to the final\
:math:`R^2` (only if ``relimp=True``).
* ``'relimp_perc'``: percent relative contribution
In addition, the output dataframe comes with hidden attributes such as
the residuals, and degrees of freedom of the model and residuals, which
can be accessed as follow, respectively:
>>> lm = pg.linear_regression() # doctest: +SKIP
>>> lm.residuals_, lm.df_model_, lm.df_resid_ # doctest: +SKIP
Note that to follow scikit-learn convention, these hidden atributes end
with an "_". When ``as_dataframe=False`` however, these attributes
are no longer hidden and can be accessed as any other keys in the
output dictionary.
>>> lm = pg.linear_regression() # doctest: +SKIP
>>> lm['residuals'], lm['df_model'], lm['df_resid'] # doctest: +SKIP
When ``as_dataframe=False`` the dictionary also contains the
processed ``X`` and ``y`` arrays (i.e, with NaNs removed if
``remove_na=True``) and the model's predicted values ``pred``.
>>> lm['X'], lm['y'], lm['pred'] # doctest: +SKIP
For a weighted least squares fit, the weighted ``Xw`` and ``yw``
arrays are included in the dictionary.
>>> lm['Xw'], lm['yw'] # doctest: +SKIP
See also
--------
logistic_regression, mediation_analysis, corr
Notes
-----
The :math:`\\beta` coefficients are estimated using an ordinary least
squares (OLS) regression, as implemented in the
:py:func:`scipy.linalg.lstsq` function. The OLS method minimizes
the sum of squared residuals, and leads to a closed-form expression for
the estimated :math:`\\beta`:
.. math:: \\hat{\\beta} = (X^TX)^{-1} X^Ty
It is generally recommended to include a constant term (intercept) to the
model to limit the bias and force the residual mean to equal zero.
Note that intercept coefficient and p-values are however rarely meaningful.
The standard error of the estimates is a measure of the accuracy of the
prediction defined as:
.. math:: \\sigma = \\sqrt{\\text{MSE} \\cdot (X^TX)^{-1}}
where :math:`\\text{MSE}` is the mean squared error,
.. math::
\\text{MSE} = \\frac{SS_{\\text{resid}}}{n - p - 1}
= \\frac{\\sum{(\\text{true} - \\text{pred})^2}}{n - p - 1}
:math:`p` is the total number of predictor variables in the model
(excluding the intercept) and :math:`n` is the sample size.
Using the :math:`\\beta` coefficients and the standard errors,
the T-values can be obtained:
.. math:: T = \\frac{\\beta}{\\sigma}
and the p-values approximated using a T-distribution with
:math:`n - p - 1` degrees of freedom.
The coefficient of determination (:math:`R^2`) is defined as:
.. math:: R^2 = 1 - (\\frac{SS_{\\text{resid}}}{SS_{\\text{total}}})
The adjusted :math:`R^2` is defined as:
.. math:: \\overline{R}^2 = 1 - (1 - R^2) \\frac{n - 1}{n - p - 1}
The relative importance (``relimp``) column is a partitioning of the
total :math:`R^2` of the model into individual :math:`R^2` contribution.
This is calculated by taking the average over average contributions in
models of different sizes. For more details, please refer to
`Groemping et al. 2006 <http://dx.doi.org/10.18637/jss.v017.i01>`_
and the R package `relaimpo
<https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf>`_.
Note that Pingouin will automatically remove any duplicate columns
from :math:`X`, as well as any column with only one unique value
(constant), excluding the intercept.
Results have been compared against sklearn, R, statsmodels and JASP.
Examples
--------
1. Simple linear regression using columns of a pandas dataframe
In this first example, we'll use the tips dataset to see how well we
can predict the waiter's tip (in dollars) based on the total bill (also
in dollars).
>>> import numpy as np
>>> import pingouin as pg
>>> df = pg.read_dataset('tips')
>>> # Let's predict the tip ($) based on the total bill (also in $)
>>> lm = pg.linear_regression(df['total_bill'], df['tip'])
>>> lm.round(2)
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
0 Intercept 0.92 0.16 5.76 0.0 0.46 0.45 0.61 1.23
1 total_bill 0.11 0.01 14.26 0.0 0.46 0.45 0.09 0.12
It comes as no surprise that total bill is indeed a significant predictor
of the waiter's tip (T=14.26, p<0.05). The :math:`R^2` of the model is 0.46
and the adjusted :math:`R^2` is 0.45, which means that our model roughly
explains ~45% of the total variance in the tip amount.
2. Multiple linear regression
We can also have more than one predictor and run a multiple linear
regression. Below, we add the party size as a second predictor of tip.
>>> # We'll add a second predictor: the party size
>>> lm = pg.linear_regression(df[['total_bill', 'size']], df['tip'])
>>> lm.round(2)
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
0 Intercept 0.67 0.19 3.46 0.00 0.47 0.46 0.29 1.05
1 total_bill 0.09 0.01 10.17 0.00 0.47 0.46 0.07 0.11
2 size 0.19 0.09 2.26 0.02 0.47 0.46 0.02 0.36
The party size is also a significant predictor of tip (T=2.26, p=0.02).
Note that adding this new predictor however only improved the :math:`R^2`
of our model by ~1%.
This function also works with numpy arrays:
>>> X = df[['total_bill', 'size']].to_numpy()
>>> y = df['tip'].to_numpy()
>>> pg.linear_regression(X, y).round(2)
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
0 Intercept 0.67 0.19 3.46 0.00 0.47 0.46 0.29 1.05
1 x1 0.09 0.01 10.17 0.00 0.47 0.46 0.07 0.11
2 x2 0.19 0.09 2.26 0.02 0.47 0.46 0.02 0.36
3. Get the residuals
>>> # For clarity, only display the first 9 values
>>> np.round(lm.residuals_, 2)[:9]
array([-1.62, -0.55, 0.31, 0.06, -0.11, 0.93, 0.13, -0.81, -0.49])
Using pandas, we can show a summary of the distribution of the residuals:
>>> import pandas as pd
>>> pd.Series(lm.residuals_).describe().round(2)
count 244.00
mean -0.00
std 1.01
min -2.93
25% -0.55
50% -0.09
75% 0.51
max 4.04
dtype: float64
5. No intercept and return only the regression coefficients
Sometimes it may be useful to remove the constant term from the regression,
or to only return the regression coefficients without calculating the
standard errors or p-values. This latter can potentially save you a lot of
time if you need to calculate hundreds of regression and only care about
the coefficients!
>>> pg.linear_regression(X, y, add_intercept=False, coef_only=True)
array([0.1007119 , 0.36209717])
6. Return a dictionnary instead of a dataframe
>>> lm_dict = pg.linear_regression(X, y, as_dataframe=False)
>>> lm_dict.keys()
dict_keys(['names', 'coef', 'se', 'T', 'pval', 'r2', 'adj_r2', 'CI[2.5%]',
'CI[97.5%]', 'df_model', 'df_resid', 'residuals', 'X', 'y',
'pred'])
7. Remove missing values
>>> X[4, 1] = np.nan
>>> y[7] = np.nan
>>> pg.linear_regression(X, y, remove_na=True, coef_only=True)
array([0.65749955, 0.09262059, 0.19927529])
8. Get the relative importance of predictors
>>> lm = pg.linear_regression(X, y, remove_na=True, relimp=True)
>>> lm[['names', 'relimp', 'relimp_perc']]
names relimp relimp_perc
0 Intercept NaN NaN
1 x1 0.342503 73.045583
2 x2 0.126386 26.954417
The ``relimp`` column is a partitioning of the total :math:`R^2` of the
model into individual contribution. Therefore, it sums to the :math:`R^2`
of the full model. The ``relimp_perc`` is normalized to sum to 100%. See
`Groemping 2006 <https://www.jstatsoft.org/article/view/v017i01>`_
for more details.
>>> lm[['relimp', 'relimp_perc']].sum()
relimp 0.468889
relimp_perc 100.000000
dtype: float64
9. Weighted linear regression
>>> X = [1, 2, 3, 4, 5, 6]
>>> y = [10, 22, 11, 13, 13, 16]
>>> w = [1, 0.1, 1, 1, 0.5, 1] # Array of weights. Must be >= 0.
>>> lm = pg.linear_regression(X, y, weights=w)
>>> lm.round(2)
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
0 Intercept 9.00 2.03 4.42 0.01 0.51 0.39 3.35 14.64
1 x1 1.04 0.50 2.06 0.11 0.51 0.39 -0.36 2.44
"""
# Extract names if X is a Dataframe or Series
if isinstance(X, pd.DataFrame):
names = X.keys().tolist()
elif isinstance(X, pd.Series):
names = [X.name]
else:
names = []
# Convert input to numpy array
X = np.asarray(X)
y = np.asarray(y)
assert y.ndim == 1, "y must be one-dimensional."
assert 0 < alpha < 1
if X.ndim == 1:
# Convert to (n_samples, n_features) shape
X = X[..., np.newaxis]
# Check for NaN / Inf
if remove_na:
X, y = rm_na(X, y[..., np.newaxis], paired=True, axis="rows")
y = np.squeeze(y)
y_gd = np.isfinite(y).all()
X_gd = np.isfinite(X).all()
assert y_gd, (
"Target (y) contains NaN or Inf. Please remove them " "manually or use remove_na=True."
)
assert X_gd, (
"Predictors (X) contain NaN or Inf. Please remove them " "manually or use remove_na=True."
)
# Check that X and y have same length
assert y.shape[0] == X.shape[0], "X and y must have same number of samples"
if not names:
names = ["x" + str(i + 1) for i in range(X.shape[1])]
if add_intercept:
# Add intercept
X = np.column_stack((np.ones(X.shape[0]), X))
names.insert(0, "Intercept")
# FINAL CHECKS BEFORE RUNNING LEAST SQUARES REGRESSION
# 1. Let's remove column(s) with only zero, otherwise the regression fails
n_nonzero = np.count_nonzero(X, axis=0)
idx_zero = np.flatnonzero(n_nonzero == 0) # Find columns that are only 0
if len(idx_zero):
X = np.delete(X, idx_zero, 1)
names = np.delete(names, idx_zero)
# 2. We also want to make sure that there is no more than one constant
# column (= intercept), otherwise the regression fails
# This is equivalent, but much faster, to pd.DataFrame(X).nunique()
idx_unique = np.where(np.all(X == X[0, :], axis=0))[0]
if len(idx_unique) > 1:
# We remove all but the first "Intercept" column.
X = np.delete(X, idx_unique[1:], 1)
names = np.delete(names, idx_unique[1:])
# Is there a constant in our predictor matrix? Useful for dof and R^2.
constant = 1 if len(idx_unique) > 0 else 0
# 3. Finally, we want to remove duplicate columns
if X.shape[1] > 1:
idx_duplicate = []
for pair in itertools.combinations(range(X.shape[1]), 2):
if np.array_equal(X[:, pair[0]], X[:, pair[1]]):
idx_duplicate.append(pair[1])
if len(idx_duplicate):
X = np.delete(X, idx_duplicate, 1)
names = np.delete(names, idx_duplicate)
# 4. Check that we have enough samples / features
n, p = X.shape[0], X.shape[1]
assert n >= 3, "At least three valid samples are required in X."
assert p >= 1, "X must have at least one valid column."
# 5. Handle weights
if weights is not None:
if relimp:
raise ValueError("relimp = True is not supported when using " "weights.")
w = np.asarray(weights)
assert w.ndim == 1, "weights must be a 1D array."
assert w.size == n, "weights must be of shape n_samples."
assert not np.isnan(w).any(), "Missing weights are not accepted."
assert not (w < 0).any(), "Negative weights are not accepted."
# Do not count weights == 0 in dof
# This gives similar results as R lm() but different from statsmodels
n = np.count_nonzero(w)
# Rescale (whitening)
wts = np.diag(np.sqrt(w))
Xw = wts @ X
yw = wts @ y
else:
# Set all weights to one, [1, 1, 1, ...]
w = np.ones(n)
Xw = X
yw = y
# FIT (WEIGHTED) LEAST SQUARES REGRESSION
coef, ss_res, rank, _ = lstsq(Xw, yw, cond=None)
ss_res = ss_res[0] if ss_res.shape == (1,) else ss_res
if coef_only:
return coef
calc_ss_res = False
if rank < Xw.shape[1]:
# in this case, ss_res is of shape (0,), i.e., an empty array
warnings.warn(
"Design matrix supplied with `X` parameter is rank "
f"deficient (rank {rank} with {Xw.shape[1]} columns). "
"That means that one or more of the columns in `X` "
"are a linear combination of one of more of the "
"other columns."
)
calc_ss_res = True
# Degrees of freedom
df_model = rank - constant
df_resid = n - rank
# Calculate predicted values and (weighted) residuals
pred = Xw @ coef
resid = yw - pred
if calc_ss_res:
# In case we did not get ss_res from lstsq due to rank deficiency
ss_res = (resid**2).sum()
# Calculate total (weighted) sums of squares and R^2
ss_tot = yw @ yw
ss_wtot = np.sum(w * (y - np.average(y, weights=w)) ** 2)
if constant:
r2 = 1 - ss_res / ss_wtot
else:
r2 = 1 - ss_res / ss_tot
adj_r2 = 1 - (1 - r2) * (n - constant) / df_resid
# Compute mean squared error, variance and SE
mse = ss_res / df_resid
beta_var = mse * (np.linalg.pinv(Xw.T @ Xw).diagonal())
beta_se = np.sqrt(beta_var)
# Compute T and p-values
T = coef / beta_se
pval = 2 * t.sf(np.fabs(T), df_resid)
# Compute confidence intervals
crit = t.ppf(1 - alpha / 2, df_resid)
marg_error = crit * beta_se
ll = coef - marg_error
ul = coef + marg_error
# Rename CI
ll_name = "CI[%.1f%%]" % (100 * alpha / 2)
ul_name = "CI[%.1f%%]" % (100 * (1 - alpha / 2))
# Create dict
stats = {
"names": names,
"coef": coef,
"se": beta_se,
"T": T,
"pval": pval,
"r2": r2,
"adj_r2": adj_r2,
ll_name: ll,
ul_name: ul,
}
# Relative importance
if relimp:
data = pd.concat(
[pd.DataFrame(y, columns=["y"]), pd.DataFrame(X, columns=names)], sort=False, axis=1
)
if "Intercept" in names:
# Intercept is the first column
reli = _relimp(data.drop(columns=["Intercept"]).cov())
reli["names"] = ["Intercept"] + reli["names"]
reli["relimp"] = np.insert(reli["relimp"], 0, np.nan)
reli["relimp_perc"] = np.insert(reli["relimp_perc"], 0, np.nan)
else:
reli = _relimp(data.cov())
stats.update(reli)
if as_dataframe:
stats = _postprocess_dataframe(pd.DataFrame(stats))
stats.df_model_ = df_model
stats.df_resid_ = df_resid
stats.residuals_ = 0 # Trick to avoid Pandas warning
stats.residuals_ = resid # Residuals is a hidden attribute
else:
stats["df_model"] = df_model
stats["df_resid"] = df_resid
stats["residuals"] = resid
stats["X"] = X
stats["y"] = y
stats["pred"] = pred
if weights is not None:
stats["yw"] = yw
stats["Xw"] = Xw
return stats
def _relimp(S):
"""Relative importance of predictors in multiple regression.
This is an internal function. This function should only be used with a low
number of predictors. Indeed, the computation time roughly doubles for each
additional predictor.
Parameters
----------
S : pd.DataFrame
Covariance matrix. The target variable MUST be the FIRST column,
followed by the predictors (excluding the intercept).
"""
assert isinstance(S, pd.DataFrame)
cols = S.columns.tolist()
# Define indices of columns: .iloc is faster than .loc
predictors = cols[1:]
npred = len(predictors)
target_int = 0
predictors_int = np.arange(1, npred + 1)
# Calculate total sum of squares and beta coefficients
# Note that the R^2 that we calculate below is always the R^2 of the model
# INCLUDING the intercept!
ss_tot = S.iat[target_int, target_int]
betas = (
np.linalg.pinv(S.iloc[predictors_int, predictors_int]) @ S.iloc[predictors_int, target_int]
)
r2_full = betas @ S.iloc[target_int, predictors_int] / ss_tot
# Pre-computed SSreg dictionnary
ss_reg_precomp = {}
# Start looping over predictors
all_preds = []
for pred in predictors_int:
loo = np.setdiff1d(predictors_int, pred)
r2_seq_mean = []
# Loop over number of predictors
for k in np.arange(0, npred - 1):
r2_seq = []
# Loop over combinations of predictors
for p in itertools.combinations(loo, int(k)):
p = list(p)
p_with = p + [pred]
# To avoid calculating several times the same values
# we use a trick here: we save the first calculation
# to a dictionnary where the key is the sorted string
# (hence the order does not matter)
if str(sorted(p)) in ss_reg_precomp.keys():
ss_reg_without = ss_reg_precomp[str(sorted(p))]
else:
S_without = S.iloc[p, target_int]
ss_reg_without = np.linalg.pinv(S.iloc[p, p]) @ S_without @ S_without
ss_reg_precomp[str(sorted(p))] = ss_reg_without
S_with = S.iloc[p_with, target_int]
ss_reg_with = pinvh(S.iloc[p_with, p_with]) @ S_with @ S_with
ss_reg_precomp[str(sorted(p_with))] = ss_reg_with
# Calculate R^2
r2_diff = (ss_reg_with - ss_reg_without) / ss_tot
# Append the difference
r2_seq.append(r2_diff)
# First averaging
r2_seq_mean.append(np.mean(r2_seq))
# When Sk(r) = S
S_without = S.iloc[loo, target_int]
ss_reg = np.linalg.pinv(S.iloc[loo, loo]) @ S_without @ S_without
r2_without = ss_reg / ss_tot
r2_seq = r2_full - r2_without
r2_seq_mean.append(r2_seq)
all_preds.append(np.mean(r2_seq_mean))
stats_relimp = {
"names": predictors,
"relimp": all_preds,
"relimp_perc": all_preds / sum(all_preds) * 100,
}
return stats_relimp
def logistic_regression(
X, y, coef_only=False, alpha=0.05, as_dataframe=True, remove_na=False, **kwargs
):
"""(Multiple) Binary logistic regression.
Parameters
----------
X : array_like
Predictor(s), of shape *(n_samples, n_features)* or *(n_samples)*.
y : array_like
Dependent variable, of shape *(n_samples)*.
``y`` must be binary, i.e. only contains 0 or 1. Multinomial logistic
regression is not supported.
coef_only : bool
If True, return only the regression coefficients.
alpha : float
Alpha value used for the confidence intervals.
:math:`\\text{CI} = [\\alpha / 2 ; 1 - \\alpha / 2]`
as_dataframe : bool
If True, returns a pandas DataFrame. If False, returns a dictionnary.
remove_na : bool
If True, apply a listwise deletion of missing values (i.e. the entire
row is removed). Default is False, which will raise an error if missing
values are present in either the predictor(s) or dependent
variable.
**kwargs : optional
Optional arguments passed to
:py:class:`sklearn.linear_model.LogisticRegression` (see Notes).
Returns
-------
stats : :py:class:`pandas.DataFrame` or dict
Logistic regression summary:
* ``'names'``: name of variable(s) in the model (e.g. x1, x2...)
* ``'coef'``: regression coefficients (log-odds)
* ``'se'``: standard error
* ``'z'``: z-scores
* ``'pval'``: two-tailed p-values
* ``'CI[2.5%]'``: lower confidence interval
* ``'CI[97.5%]'``: upper confidence interval
See also
--------
linear_regression
Notes
-----
.. caution:: This function is a wrapper around the
:py:class:`sklearn.linear_model.LogisticRegression` class. However,
Pingouin internally disables the L2 regularization and changes the
default solver to 'newton-cg' to obtain results that are similar to R and
statsmodels.
Logistic regression assumes that the log-odds (the logarithm of the
odds) for the value labeled "1" in the response variable is a linear
combination of the predictor variables. The log-odds are given by the
`logit <https://en.wikipedia.org/wiki/Logit>`_ function,
which map a probability :math:`p` of the response variable being "1"
from :math:`[0, 1)` to :math:`(-\\infty, +\\infty)`.
.. math:: \\text{logit}(p) = \\ln \\frac{p}{1 - p} = \\beta_0 + \\beta X
The odds of the response variable being "1" can be obtained by
exponentiating the log-odds:
.. math:: \\frac{p}{1 - p} = e^{\\beta_0 + \\beta X}
and the probability of the response variable being "1" is given by the
`logistic function <https://en.wikipedia.org/wiki/Logistic_function>`_:
.. math:: p = \\frac{1}{1 + e^{-(\\beta_0 + \\beta X})}
The first coefficient is always the constant term (intercept) of
the model. Pingouin will automatically add the intercept
to your predictor(s) matrix, therefore, :math:`X` should not include a
constant term. Pingouin will remove any constant term (e.g column with only
one unique value), or duplicate columns from :math:`X`.
The calculation of the p-values and confidence interval is adapted from a
`code by Rob Speare
<https://gist.github.com/rspeare/77061e6e317896be29c6de9a85db301d>`_.
Results have been compared against statsmodels, R, and JASP.
Examples
--------
1. Simple binary logistic regression.
In this first example, we'll use the
`penguins dataset <https://github.com/allisonhorst/palmerpenguins>`_
to see how well we can predict the sex of penguins based on their
bodies mass.
>>> import numpy as np
>>> import pandas as pd
>>> import pingouin as pg
>>> df = pg.read_dataset('penguins')
>>> # Let's first convert the target variable from string to boolean:
>>> df['male'] = (df['sex'] == 'male').astype(int) # male: 1, female: 0
>>> # Since there are missing values in our outcome variable, we need to
>>> # set `remove_na=True` otherwise regression will fail.
>>> lom = pg.logistic_regression(df['body_mass_g'], df['male'],
... remove_na=True)
>>> lom.round(2)
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -5.16 0.71 -7.24 0.0 -6.56 -3.77
1 body_mass_g 0.00 0.00 7.24 0.0 0.00 0.00
Body mass is a significant predictor of sex (p<0.001). Here, it
could be useful to rescale our predictor variable from *g* to *kg*
(e.g divide by 1000) in order to get more intuitive coefficients and
confidence intervals:
>>> df['body_mass_kg'] = df['body_mass_g'] / 1000
>>> lom = pg.logistic_regression(df['body_mass_kg'], df['male'],
... remove_na=True)
>>> lom.round(2)
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -5.16 0.71 -7.24 0.0 -6.56 -3.77
1 body_mass_kg 1.23 0.17 7.24 0.0 0.89 1.56
2. Multiple binary logistic regression
We'll now add the species as a categorical predictor in our model. To do
so, we first need to dummy-code our categorical variable, dropping the
first level of our categorical variable (species = Adelie) which will be
used as the reference level:
>>> df = pd.get_dummies(df, columns=['species'], dtype=float, drop_first=True)
>>> X = df[['body_mass_kg', 'species_Chinstrap', 'species_Gentoo']]
>>> y = df['male']
>>> lom = pg.logistic_regression(X, y, remove_na=True)
>>> lom.round(2)
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -26.24 2.84 -9.24 0.00 -31.81 -20.67
1 body_mass_kg 7.10 0.77 9.23 0.00 5.59 8.61
2 species_Chinstrap -0.13 0.42 -0.31 0.75 -0.96 0.69
3 species_Gentoo -9.72 1.12 -8.65 0.00 -11.92 -7.52
3. Using NumPy aray and returning only the coefficients
>>> pg.logistic_regression(X.to_numpy(), y.to_numpy(), coef_only=True,
... remove_na=True)
array([-26.23906892, 7.09826571, -0.13180626, -9.71718529])
4. Passing custom parameters to sklearn
>>> lom = pg.logistic_regression(X, y, solver='sag', max_iter=10000,
... random_state=42, remove_na=True)
>>> print(lom['coef'].to_numpy())
[-25.98248153 7.02881472 -0.13119779 -9.62247569]
**How to interpret the log-odds coefficients?**
We'll use the `Wikipedia example
<https://en.wikipedia.org/wiki/Logistic_regression#Probability_of_passing_an_exam_versus_hours_of_study>`_
of the probability of passing an exam
versus the hours of study:
*A group of 20 students spends between 0 and 6 hours studying for an
exam. How does the number of hours spent studying affect the
probability of the student passing the exam?*
>>> # First, let's create the dataframe
>>> Hours = [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50,
... 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50]
>>> Pass = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]
>>> df = pd.DataFrame({'HoursStudy': Hours, 'PassExam': Pass})
>>> # And then run the logistic regression
>>> lr = pg.logistic_regression(df['HoursStudy'], df['PassExam']).round(3)
>>> lr
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -4.078 1.761 -2.316 0.021 -7.529 -0.626
1 HoursStudy 1.505 0.629 2.393 0.017 0.272 2.737
The ``Intercept`` coefficient (-4.078) is the log-odds of ``PassExam=1``
when ``HoursStudy=0``. The odds ratio can be obtained by exponentiating
the log-odds:
>>> np.exp(-4.078)
0.016941314421496552
i.e. :math:`0.017:1`. Conversely the odds of failing the exam are
:math:`(1/0.017) \\approx 59:1`.
The probability can then be obtained with the following equation
.. math:: p = \\frac{1}{1 + e^{-(-4.078 + 0 * 1.505)}}
>>> 1 / (1 + np.exp(-(-4.078)))
0.016659087580814722
The ``HoursStudy`` coefficient (1.505) means that for each additional hour
of study, the log-odds of passing the exam increase by 1.505, and the odds
are multipled by :math:`e^{1.505} \\approx 4.50`.
For example, a student who studies 2 hours has a probability of passing
the exam of 25%:
>>> 1 / (1 + np.exp(-(-4.078 + 2 * 1.505)))
0.2557836148964987
The table below shows the probability of passing the exam for several
values of ``HoursStudy``:
+----------------+----------+----------------+------------------+
| Hours of Study | Log-odds | Odds | Probability |
+================+==========+================+==================+
| 0 | −4.08 | 0.017 ≈ 1:59 | 0.017 |
+----------------+----------+----------------+------------------+
| 1 | −2.57 | 0.076 ≈ 1:13 | 0.07 |
+----------------+----------+----------------+------------------+
| 2 | −1.07 | 0.34 ≈ 1:3 | 0.26 |
+----------------+----------+----------------+------------------+
| 3 | 0.44 | 1.55 | 0.61 |
+----------------+----------+----------------+------------------+
| 4 | 1.94 | 6.96 | 0.87 |
+----------------+----------+----------------+------------------+
| 5 | 3.45 | 31.4 | 0.97 |
+----------------+----------+----------------+------------------+
| 6 | 4.96 | 141.4 | 0.99 |
+----------------+----------+----------------+------------------+
"""
# Check that sklearn is installed
from pingouin.utils import _is_sklearn_installed
_is_sklearn_installed(raise_error=True)
from sklearn.linear_model import LogisticRegression
# Extract names if X is a Dataframe or Series
if isinstance(X, pd.DataFrame):
names = X.keys().tolist()
elif isinstance(X, pd.Series):
names = [X.name]
else:
names = []
# Convert to numpy array
X = np.asarray(X)
y = np.asarray(y)
assert y.ndim == 1, "y must be one-dimensional."
assert 0 < alpha < 1, "alpha must be between 0 and 1."
# Add axis if only one-dimensional array
if X.ndim == 1:
X = X[..., np.newaxis]
# Check for NaN / Inf
if remove_na:
X, y = rm_na(X, y[..., np.newaxis], paired=True, axis="rows")
y = np.squeeze(y)
y_gd = np.isfinite(y).all()
X_gd = np.isfinite(X).all()
assert y_gd, (
"Target (y) contains NaN or Inf. Please remove them " "manually or use remove_na=True."
)
assert X_gd, (
"Predictors (X) contain NaN or Inf. Please remove them " "manually or use remove_na=True."
)
# Check that X and y have same length
assert y.shape[0] == X.shape[0], "X and y must have same number of samples"
# Check that y is binary
if np.unique(y).size != 2:
raise ValueError("Dependent variable must be binary.")
if not names:
names = ["x" + str(i + 1) for i in range(X.shape[1])]
# We also want to make sure that there is no column
# with only one unique value, otherwise the regression fails
# This is equivalent, but much faster, to pd.DataFrame(X).nunique()
idx_unique = np.where(np.all(X == X[0, :], axis=0))[0]
if len(idx_unique):
X = np.delete(X, idx_unique, 1)
names = np.delete(names, idx_unique).tolist()
# Finally, we want to remove duplicate columns
if X.shape[1] > 1:
idx_duplicate = []
for pair in itertools.combinations(range(X.shape[1]), 2):
if np.array_equal(X[:, pair[0]], X[:, pair[1]]):
idx_duplicate.append(pair[1])
if len(idx_duplicate):
X = np.delete(X, idx_duplicate, 1)
names = np.delete(names, idx_duplicate).tolist()
# Initialize and fit
if "solver" not in kwargs:
# https://stats.stackexchange.com/a/204324/253579
# Updated in Pingouin > 0.3.6 to be consistent with R
kwargs["solver"] = "newton-cg"
if "penalty" not in kwargs:
kwargs["penalty"] = "none"
lom = LogisticRegression(**kwargs)
lom.fit(X, y)
if lom.get_params()["fit_intercept"]:
names.insert(0, "Intercept")
X_design = np.column_stack((np.ones(X.shape[0]), X))
coef = np.append(lom.intercept_, lom.coef_)
else:
coef = lom.coef_
X_design = X
if coef_only:
return coef
# Fisher Information Matrix
n, p = X_design.shape
denom = 2 * (1 + np.cosh(lom.decision_function(X)))
denom = np.tile(denom, (p, 1)).T
fim = (X_design / denom).T @ X_design
crao = np.linalg.pinv(fim)
# Standard error and Z-scores
se = np.sqrt(np.diag(crao))
z_scores = coef / se
# Two-tailed p-values
pval = 2 * norm.sf(np.fabs(z_scores))
# Wald Confidence intervals
# In R: this is equivalent to confint.default(model)
# Note that confint(model) will however return the profile CI
crit = norm.ppf(1 - alpha / 2)
ll = coef - crit * se
ul = coef + crit * se
# Rename CI
ll_name = "CI[%.1f%%]" % (100 * alpha / 2)
ul_name = "CI[%.1f%%]" % (100 * (1 - alpha / 2))
# Create dict
stats = {
"names": names,
"coef": coef,
"se": se,
"z": z_scores,
"pval": pval,
ll_name: ll,
ul_name: ul,
}
if as_dataframe:
return _postprocess_dataframe(pd.DataFrame(stats))
else:
return stats
def _point_estimate(X_val, XM_val, M_val, y_val, idx, n_mediator, mtype="linear", **logreg_kwargs):
"""Point estimate of indirect effect based on bootstrap sample."""
# Mediator(s) model (M(j) ~ X + covar)
beta_m = []
for j in range(n_mediator):
if mtype == "linear":
beta_m.append(linear_regression(X_val[idx], M_val[idx, j], coef_only=True)[1])
else:
beta_m.append(
logistic_regression(X_val[idx], M_val[idx, j], coef_only=True, **logreg_kwargs)[1]
)
# Full model (Y ~ X + M + covar)
beta_y = linear_regression(XM_val[idx], y_val[idx], coef_only=True)[2 : (2 + n_mediator)]
# Point estimate
return beta_m * beta_y
def _bias_corrected_ci(bootdist, sample_point, alpha=0.05):
"""Bias-corrected confidence intervals
Parameters
----------
bootdist : array-like
Array with bootstrap estimates for each sample.
sample_point : float
Point estimate based on full sample.
alpha : float
Alpha for confidence interval.
Returns
-------
CI : 1d array-like
Lower and upper bias-corrected confidence interval estimates.
Notes
-----
This is what's used in the "cper" method implemented in :py:func:`pingouin.compute_bootci`.
This differs from the bias-corrected and accelerated method (BCa, default in Matlab and
SciPy) because it does not correct for skewness. Indeed, the acceleration parameter, a,
is proportional to the skewness of the bootstrap distribution. The bias-correction parameter,
z0, is related to the proportion of bootstrap estimates that are less than the observed
statistic.
"""
# Bias of bootstrap estimates
# In Matlab bootci they also count when bootdist == sample_point
# >>> z0 = norminv(mean(bstat < stat,1) + mean(bstat == stat,1)/2);