We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
A few bugs emerged from CI. We need to update both the branch-0.11 and branch-0.12 branches.
branch-0.11
branch-0.12
06_Introduction_to_Supervised_Learning-test.py in <module> 338 n_neighbors = 3 339 --> 340 distances, indices = knn.kneighbors(X_df, k=n_neighbors) 341 342 cuml/neighbors/nearest_neighbors.pyx in cuml.neighbors.nearest_neighbors.NearestNeighbors.kneighbors() TypeError: kneighbors() got an unexpected keyword argument 'k'
TypeError Traceback (most recent call last) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1384 data = as_column( -> 1385 memoryview(arbitrary), dtype=dtype, nan_as_null=nan_as_null 1386 ) TypeError: memoryview: a bytes-like object is required, not 'tuple' During handling of the above exception, another exception occurred: ArrowInvalid Traceback (most recent call last) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1401 data = as_column( -> 1402 pa.array(arbitrary, type=pa_type, from_pandas=nan_as_null), 1403 dtype=dtype, /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: Cannot mix NumPy dtypes int64 and datetime64 During handling of the above exception, another exception occurred: ArrowInvalid Traceback (most recent call last) /tmp/02_Introduction_to_cuDF-test.py in <module> 169 170 --> 171 df = cudf.DataFrame([('id', ids), ('timestamp', timestamps_np)]) 172 print(df) 173 /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in __init__(self, data, index, columns, dtype) 183 184 for i, (col_name, series) in enumerate(data): --> 185 self.insert(i, col_name, series, forceindex=index is not None) 186 187 self._add_empty_columns(columns, index) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in insert(self, loc, column, value, forceindex) 1557 ) 1558 self._cols[column] = self._prepare_series_for_add( -> 1559 value, forceindex=forceindex, name=column 1560 ) 1561 keys = list(self._cols.keys()) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in _prepare_series_for_add(self, col, forceindex, name) 1516 if (not SCALAR) and (name is None) and hasattr(col, "name"): 1517 name = col.name -> 1518 series = Series(col, name=name) if not SCALAR else col 1519 self._sanitize_columns(series) 1520 series = self._sanitize_values(series, SCALAR) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/series.py in __init__(self, data, index, name, nan_as_null, dtype) 122 if not isinstance(data, column.TypedColumnBase): 123 data = column.as_column( --> 124 data, nan_as_null=nan_as_null, dtype=dtype, name=name 125 ) 126 /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1414 data = as_column( 1415 np.array(arbitrary, dtype=np_type), -> 1416 nan_as_null=nan_as_null, 1417 ) 1418 if hasattr(data, "name") and (name is not None): /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1224 data = datetime.DatetimeColumn.from_numpy(arbitrary) 1225 elif arbitrary.dtype.kind in ("O", "U"): -> 1226 data = as_column(pa.Array.from_pandas(arbitrary)) 1227 else: 1228 data = as_column(rmm.to_device(arbitrary), nan_as_null=nan_as_null) /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.Array.from_pandas() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: only handle 1-dimensional arrays
The text was updated successfully, but these errors were encountered:
No branches or pull requests
A few bugs emerged from CI. We need to update both the
branch-0.11
andbranch-0.12
branches.The text was updated successfully, but these errors were encountered: