-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-5-implicit-euler-method.py
58 lines (45 loc) · 1.41 KB
/
lab-5-implicit-euler-method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from math import sin, pi
import matplotlib.pylab
U_max = 100
f = 50
R1 = 5
R2 = 4
R3 = 7
C1 = 0.0003
C2 = 0.00015
final_time = 0.2
step = 0.0000001
def u1(t):
return U_max * sin(2 * pi * f * t)
differential_equations = [
lambda X, t:
(1 / C1) * (1 / (1 + R1 / R2 + R1 / R3)) * (u1(t) * (1 / R2 + 1 / R3) - X[0] * (1 / R2 + 1 / R3) - X[1] / R3),
lambda X, t:
(1 / C2) * (1 / R3) * (u1(t) - X[0] - X[1] -
(1 / (1 / R1 + 1 / R2 + 1 / R3)) * (u1(t) * (1 / R2 + 1 / R3) -
X[0] * (1 / R2 + 1 / R3) - X[1] / R3)),
]
def find_plot():
current_time = 0
result = []
X = [0, 0]
while current_time < final_time:
previous = []
for i in range(len(X)):
previous.append(X[i] + step * differential_equations[i](X, current_time))
for i in range(len(X)):
X[i] += step * differential_equations[i](previous, current_time)
result.append(X[1])
current_time += step
return result
def build_graph(times, result):
matplotlib.pylab.plot(times, result)
matplotlib.pylab.ylabel('U2')
matplotlib.pylab.xlabel('current_time')
matplotlib.pylab.savefig("graphs/lab5_U2.png")
def main():
times = [step * i for i in range(int(final_time / step))]
result = find_plot()
build_graph(times, result)
if __name__ == '__main__':
main()