|
4 | 4 | import time
|
5 | 5 | from io import TextIOWrapper
|
6 | 6 |
|
| 7 | +import numpy as np |
7 | 8 | import pytest
|
8 | 9 | import redis
|
9 | 10 | import redis.commands.search
|
@@ -113,6 +114,13 @@ def client(request, stack_url):
|
113 | 114 | return r
|
114 | 115 |
|
115 | 116 |
|
| 117 | +@pytest.fixture |
| 118 | +def binary_client(request, stack_url): |
| 119 | + r = _get_client(redis.Redis, request, decode_responses=False, from_url=stack_url) |
| 120 | + r.flushdb() |
| 121 | + return r |
| 122 | + |
| 123 | + |
116 | 124 | @pytest.mark.redismod
|
117 | 125 | def test_client(client):
|
118 | 126 | num_docs = 500
|
@@ -1705,6 +1713,61 @@ def test_search_return_fields(client):
|
1705 | 1713 | assert "telmatosaurus" == total["results"][0]["extra_attributes"]["txt"]
|
1706 | 1714 |
|
1707 | 1715 |
|
| 1716 | +@pytest.mark.redismod |
| 1717 | +def test_binary_and_text_fields(binary_client): |
| 1718 | + assert ( |
| 1719 | + binary_client.get_connection_kwargs()["decode_responses"] is False |
| 1720 | + ), "This feature is only available when decode_responses is False" |
| 1721 | + |
| 1722 | + fake_vec = np.array([0.1, 0.2, 0.3, 0.4], dtype=np.float32) |
| 1723 | + |
| 1724 | + index_name = "mixed_index" |
| 1725 | + mixed_data = {"first_name": "🐍python", "vector_emb": fake_vec.tobytes()} |
| 1726 | + binary_client.hset(f"{index_name}:1", mapping=mixed_data) |
| 1727 | + |
| 1728 | + schema = ( |
| 1729 | + TagField("first_name"), |
| 1730 | + VectorField( |
| 1731 | + "embeddings_bio", |
| 1732 | + algorithm="HNSW", |
| 1733 | + attributes={ |
| 1734 | + "TYPE": "FLOAT32", |
| 1735 | + "DIM": 4, |
| 1736 | + "DISTANCE_METRIC": "COSINE", |
| 1737 | + }, |
| 1738 | + ), |
| 1739 | + ) |
| 1740 | + |
| 1741 | + binary_client.ft(index_name).create_index( |
| 1742 | + fields=schema, |
| 1743 | + definition=IndexDefinition( |
| 1744 | + prefix=[f"{index_name}:"], index_type=IndexType.HASH |
| 1745 | + ), |
| 1746 | + ) |
| 1747 | + |
| 1748 | + bytes_person_1 = binary_client.hget(f"{index_name}:1", "vector_emb") |
| 1749 | + decoded_vec_from_hash = np.frombuffer(bytes_person_1, dtype=np.float32) |
| 1750 | + assert np.array_equal(decoded_vec_from_hash, fake_vec), "The vectors are not equal" |
| 1751 | + |
| 1752 | + query = ( |
| 1753 | + Query("*") |
| 1754 | + .return_field("vector_emb", decode_field=False) |
| 1755 | + .return_field("first_name", decode_field=True) |
| 1756 | + ) |
| 1757 | + docs = binary_client.ft(index_name).search(query=query, query_params={}).docs |
| 1758 | + decoded_vec_from_search_results = np.frombuffer( |
| 1759 | + docs[0]["vector_emb"], dtype=np.float32 |
| 1760 | + ) |
| 1761 | + |
| 1762 | + assert np.array_equal( |
| 1763 | + decoded_vec_from_search_results, fake_vec |
| 1764 | + ), "The vectors are not equal" |
| 1765 | + |
| 1766 | + assert ( |
| 1767 | + docs[0]["first_name"] == mixed_data["first_name"] |
| 1768 | + ), "The first is not decoded correctly" |
| 1769 | + |
| 1770 | + |
1708 | 1771 | @pytest.mark.redismod
|
1709 | 1772 | def test_synupdate(client):
|
1710 | 1773 | definition = IndexDefinition(index_type=IndexType.HASH)
|
|
0 commit comments