-
Notifications
You must be signed in to change notification settings - Fork 2
/
lista04.tex
726 lines (668 loc) · 39.9 KB
/
lista04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
% Filename: lista04.tex
%
% This code is part of 'Solutions for MT402, Matrizes'
%
% Description: This file corresponds to the solutions of homework sheet 04.
%
% Created: 18.03.12 12:15:06 PM
% Last Change: 04.06.12 05:11:35 PM
%
% Authors:
% - Raniere Silva (2012): initial version
%
% Copyright (c) 2012 Raniere Silva <r.gaia.cs@gmail.com>
%
% This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
%
% This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%
\begin{questions}
\question[Exerc\'{i}cio 5.1.12, p\'{a}gina 278, do Meyer\nocite{Meyer:2000:matrix}] Desigualdade de Holder: para vetores $u$ e $v$ em $\mathbb{C}^n$, demonstre que:
\[
| u^* v | \leq \sum_i \left( | u_i |^p \right)^{1/p} \left( | v_i |^q \right)^{1/q},
\]
onde $p > 1$, $q > 1$ e $\frac{1}{p} + \frac{1}{q} = 1$.
\begin{solution}
Seja $f(t) = \left( 1 - \lambda \right) + \lambda t - t^\lambda$, $0 < \lambda < 1$. Derivando $f(t)$ temos
\begin{align*}
f'(t) &= \lambda - \lambda t^{\lambda - 1}.
\end{align*}
Verificamos ent\~{a}o que $f'(1) = 0$, $f'(t > 1) < 0$ e $f'(t < 1) > 0$. Portanto $f(t) \geq f(1) = 0$
E para $t = \alpha / \beta$ temos
\begin{align*}
f(\alpha / \beta &= \left( 1 - \lambda \right) + \lambda \left( \alpha / \beta \right) - \left( \alpha / \beta \right)^\lambda \\
&= \left[ \left( 1 - \lambda \right) \beta^\lambda + \lambda \alpha \beta^{\lambda - 1} - \alpha^\lambda \right] / \beta^\lambda \\
0 &\leq \left[ \left( 1 - \lambda \right) \beta^\lambda + \lambda \alpha \beta^{\lambda - 1} - \alpha^\lambda \right] / \beta^\lambda && f(t) \geq 0 \\
0 &\leq \left( 1 - \lambda \right) \beta^\lambda + \lambda \alpha \beta^{\lambda - 1} - \alpha^\lambda && \beta > 0 \\
\alpha^\lambda &\leq \left( 1 - \lambda \right) \beta^\lambda + \lambda \alpha \beta^{\lambda - 1} \\
\alpha^\lambda \beta^{1 - \lambda} &\leq \left( 1 - \lambda \right) \beta + \lambda \alpha
\end{align*}
Fazendo $\alpha = | \hat{x}_i |^p$, $\beta = | \hat{y}_i |^q$, $\lambda = 1 / p$ e $(1 - \lambda) = 1 / q$ temos
\begin{align*}
| \hat{x}_i |^{p \left( 1 / p \right)} | \hat{y}_i |^{q \left( 1 / q \right)} &\leq \left( 1 / q \right) | \hat{y}_i |^q + \left( 1 / p \right) | \hat{x}_i |^p.
\end{align*}
Consequentemente
\begin{align*}
\sum_i | \hat{x}_i |^{p \left( 1 / p \right)} | \hat{y}_i |^{q \left( 1 / q \right)} &= \sum_i | \hat{x}_i | | \hat{y}_i | \\
&\leq \sum_i \left( \left( 1 / q \right) | \hat{y}_i |^q + \left( 1 / p \right) | \hat{x}_i |^p \right) \\
&= \left( 1 / p \right) \sum_i | \hat{x}_i |^p + \left( 1 / q \right) \sum_i | \hat{y}_i |^q = 1.
\end{align*}
Fazendo $\hat{x}_i = x_i / \| x \|_p$ e $\hat{y}_i = y_i / \| y \|_q$ temos
\begin{align*}
\sum_i \left( | x_i | / \| x \|_p \right) \left( | y_i | / \| y \|_q \right) &\leq \left( 1 / p \right) \sum_i \left( | x_i | / \| x \|_p \right)^p + \left( 1 / q \right) \sum_i \left( | y_i | / \| y \|_q \right)^q.
\end{align*}
Aplicando a desigualdade triangular
\begin{align*}
| x^* y | &= \left| \sum_i \bar{x_i} y_i \right| \\
&\leq \sum_i | \bar{x_i} | | y_i | \\
&= \sum_i | x_i y_i | \\
&\leq \left( \sum_i | x_i |^p \right)^{1 / p} \left( \sum_i | y_i |^q \right)^{1 / q} \\
&= \| x \|_p \| y \|_q.
\end{align*}
\end{solution}
Em particular, se $p = q = 2$ tem-se a desigualdade de Cauchy-Schwarz.
\begin{solution}
A desigualdade de Cauchy-Schwarz corresponde a
\begin{align*}
| x^* y | \leq \| x \| \| y \| \quad \forall x, y \in \mathbb{C}^{n \times n}.
\end{align*}
\end{solution}
\question[Exerc\'{i}cio 5.1.9, p\'{a}gina 277, do Meyer\nocite{Meyer:2000:matrix}] Para vetores $v$ e $w$ em $\mathbb{C}^n$, n\~{a}o nulos, a rela\c{c}\~{a}o de Cauchy-Schwarz \'{e} satisfeita na igualdade se e somente se \dots
\begin{solution}
A rela\c{c}\~{a}o de Cauchy-Schwarz \'{e}
\[
| x^* y | \leq \| x \| \| y \|, \forall x, y \in \mathbb{C}^{n \times 1}.
\]
E a igualdade \'{e} satisfeita se e somente se $y = \alpha x$ para $\alpha = x^* y / x^* x$.
Primeiro vamos mostrar que se $y = \alpha x$ ent\~{a}o $| x^* y | = \| x \| \| y \|$:
\begin{align*}
| x^* y | &= | x^* \alpha x | && \text{pois $y = \alpha x$} \\
&= | \alpha | | x^* x | \\
&= | \alpha | \| x \|^2 \\
&= | \alpha | \| x \| \| x \| \\
&= \| x \| \| \alpha x \| \\
&= \| x \| \| y \| && \text{pois $y = \alpha x$.}
\end{align*}
Agora vamos mostrar que se $| x^* y | = \| x \| \| y \|$ ent\~{a}o $y = \alpha x$. Seja $\alpha = x^* y / \| x \|^2$, ent\~{a}o:
\[
0 \leq \| \alpha x - y \|^2 = \frac{\| y \| ^2 \| x \|^2 - \left( x^* y \right) \left( y^* x \right)}{\| x \|^2}.
\]
Logo, $\| \alpha x - y \| = 0$. Mas pela defini\c{c}\~{a}o de norma $\| \alpha x - y \| = 0 \iff \alpha x - y = 0$, portanto $y = \alpha x$.
\end{solution}
\question Demonstre que $| u^* v | \leq \| u \|_1 \| v \|_\infty$.
\begin{solution}
Temos que
\begin{align*}
\left| u^* v \right| &= \left| \sum_i \bar{u_i} v_i \right| && \text{pela defini\c{c}\~{a}o} \\
&\leq \sum_i \left| \bar{u_i} v_i \right| && \text{pela desigualdade triangular} \\
&\leq \sum_i \left| \bar{u_i} \right| \left| v_i \right| && \text{pela desigualdade de Cauchy-Schwarz} \\
&\leq \sum_i \left| u_i \right| \left| v_i \right|, \\
\| u \|_1 &= \sum_i | u_i | && \text{pela defini\c{c}\~{a}o,} \\
\| v \|_\infty &= \max_i | v_i | && \text{pela defini\c{c}\~{a}o,} \\
\| u \|_1 \| v \|_\infty &= \left( \sum_i | u_i | \right) \max_i | v_i | \\
&= \sum_i | u_i | \max_j | v_j |.
\end{align*}
Comparando $\sum_i | u_i | | v_i |$ com $\sum_i | u_i | \max_j | v_j |$ verificamos que
\[
\sum_i | u_i | | v_i | \leq \sum_i | u_i | \max_j | v_j |.
\]
Logo, concluimos que $| u^* v | \leq \| u \|_1 \| v \|_\infty$.
\end{solution}
\question Demonstre que para qualquer norma vetorial:
\[
| \| v \| - \| w \| | \leq \| v - w \|.
\]
\begin{solution}
Temos que
\begin{align*}
\| w \| &= \| w - v + v \| \\
&\leq \| w - v \| + \| v \| && \text{pela desigualdade triangular,} \\
\| v \| &= \| v - w + w \| \\
&\leq \| v - w \| + \| w \| && \text{pela desigualdade triangular.}
\end{align*}
Logo,
\begin{align*}
\| w \| - \| v \| &\leq \| w - v \|, \\
\| v \| - \| w \| &\leq \| v - w \|.
\end{align*}
Como $\| w - v \| = \| v - w \|$, temos que
\begin{align*}
| \| v \| - \| w \| | \leq \| v - w \|.
\end{align*}
\end{solution}
\question Demonstre que $\lim_{p \rightarrow \infty} \| v \|_p = \| v \|_\infty = \max_i \left\{ | v_i | \right\}$.
\begin{solution}
Temos que
\begin{align*}
\lim_{p \to \infty} \| v \|_p &= \lim_{p \to \infty} \left( | v_1 |^p + | v_2 |^p + \ldots + | v_n |^p \right)^{1 / p} && \text{pela defini\c{c}\~{a}o de norma} \\
&= \lim_{p \to \infty} \left[ V^p \left( \frac{| v_1 |^p}{V^p} + \frac{| v_2 |^p}{V^p} + \ldots + \frac{| v_n |^p}{V^p} \right) \right]^{1 / p} \\
&= \lim_{p \to \infty} \left( V^p \right)^{1 / p} \left( \frac{| v_1 |^p}{V^p} + \frac{| v_2 |^p}{V^p} + \ldots + \frac{| v_n |^p}{V^p} \right)^{1 / p} \\
&= \lim_{p \to \infty} V \cdot \lim_{p \to \infty} \left( \frac{| v_1 |^p}{V^p} + \frac{| v_2 |^p}{V^p} + \ldots + \frac{| v_n |^p}{V^p} \right)^{1 / p} && \text{pela propriedade do limite}\\
&= V \cdot 1,
\end{align*}
onde $V = \max_i | v_i |$.
\end{solution}
\question[Exemplo 5.1.3, p\'{a}gina 276, do Meyer\nocite{Meyer:2000:matrix}.] Equival\^{e}ncia entre normas vetoriais: demonstre que para cada par de normas, $\| \cdot \|_p$ e $\| \cdot \|_q$, num espa\c{c}o vetorial $V$ de dimens\~{a}o $n$, existem constantes $\alpha$ e $\beta$ tais que: $\alpha \| v \|_q \leq \| v \|_p \leq \beta \| v \|_q$, $v \in V$, $v \neq 0$. (Usando o conjunto $S_q = \left\{ w \mid \| w \|_q = 1 \right\}$ e a constante $\mu = \min \| w \|_p$ estabela\c{c}a a rela\c{c}\~{a}o: $\| v \|_p \geq \mu \| v \|_q$. Use argumentos semelhantes para obter rela\c{c}\~{a}o da forma: $\| v \|_q \geq \sigma \| v \|_p$).
\begin{solution}
Para $S_b = \left\{ y \mid \| y \|_b = 1 \right\}$, seja $\mu = \min_{y \in S_b} \| y \|_a > 0$. Ent\~{a}o
\begin{align*}
\frac{x}{\| x \|_b} \in S_b \implies \| x \|_a = \| x \|_b \left\| \frac{x}{\| x \|_b} \right \|_a \geq \| x \|_b \min_{y \in S_b} \| y \|_a = \| x \|_b \mu.
\end{align*}
Portanto, $\alpha = \mu$ e $b = 1 / v$.
\end{solution}
\question Demonstre as rela\c{c}\~{o}es:
\begin{parts}
\part $\| v \|_2 \leq \| v \|_1 \leq \sqrt{n} \| v \|_2$;
\begin{solution}
Temos que
\begin{align*}
\| v \|_2 &= \left( \sum_i v_i^2 \right)^{1 / 2} && \text{pela defini\c{c}\~{a}o de norma,} \\
\| v \|_2^2 &= \sum_i v_i^2, \\
\sqrt{n} \| v \|_2 &= \| \sqrt{n} v \| \\
&= \left( \sum_i n v_i^2 \right)^{1 / 2}, \\
\| v \|_1 &= \sum_i | v_i | && \text{pela defini\c{c}\~{a}o de norma,} \\
\| v \|_1^2 &= \left( \sum_i \| v_i \| \right)^2 \\
&= \left( \sum_i v_i^2 \right) + 2 \left( \sum_{i \neq j} \| v_i \| \| v_j \| \right). \\
\end{align*}
Logo, notamos que
\begin{align*}
\| v \|_i^2 = \left( \sum_i v_i^2 \right) + \ldots \geq \sum_i v_i^2 = \| v \|_2^2
\end{align*}
e portanto $\| v \|_1 \geq \| v \|_2$. Tamb\'{e}m notamos que
\begin{align*}
\| v \|_1^2 = \left( \sum_i v_i^2 \right) + \ldots \leq \sum_i n v_i^2 = n \| v \|_2^2
\end{align*}
e portanto $\| v \|_1 \leq \sqrt{n} \| v \|_2$.
\end{solution}
\part $\| v \|_\infty \leq \| v \|_2 \leq \sqrt{n} \| v \|_\infty$;
\begin{solution}
Temos que
\begin{align*}
\| v \|_\infty &= \max_i | v_i | && \text{pela defini\c{c}\~{a}o de norma,} \\
\| v \|_\infty^2 &= \left( max_i | v_i | \right)^2, \\
\sqrt{n} \| v \|_\infty &= \| \sqrt{n} v \|_\infty \\
&= \max_i | \sqrt{n} v_i |, \\
\| v \|_2 &= \left( \sum_i v_i^2 \right)^{1 / 2} && \text{pela defini\c{c}\~{a}o de norma,} \\
\| v \|_2^2 &= \sum_i v_i^2,
\end{align*}
Logo, notamos que
\begin{align*}
\| v \|_2^2 = \sum_i v_i^2 \geq \left( \max_i | v_i | \right)^2 = \| v \|_\infty^2
\end{align*}
e portanto $\| v \|_2 \geq \| v \|_\infty$. Tamb\'{e}m notamos que
\begin{align*}
\| v \|_2^2 = \sum_i v_i^2 \leq \sum_i n \max_j | v_j | = \| \sqrt{n} v \|_\infty^2
\end{align*}
e portanto $\| v \|_2 \leq \sqrt{n} \| v \|_\infty$.
\end{solution}
\part $\| v \|_\infty \leq \| v \|_1 \leq n \| v \|_\infty$.
\begin{solution}
Temos que
\begin{align*}
\| v \|_\infty &= \max_i | v_i | && \text{pela defini\c{c}\~{a}o,} \\
\| v \|_1 &= \sum_i | v_i | && \text{pela defini\c{c}\~{a}o.} \\
\end{align*}
Logo, notamos que
\begin{align*}
\| v \|_\infty \leq \| v \|_1 \leq n \| v \|_\infty.
\end{align*}
\end{solution}
\end{parts}
\question[Ver exerc\'{i}cio 5.2.5, p\'{a}gina 285, do Meyer\nocite{Meyer:2000:matrix}] Demonstre as rela\c{c}\~{o}es para normas matricias induzidas a partir das normas-p vetoriais:
\begin{parts}
\part $\| A x \|_p \leq \| A \|_p \| x \|_p$;
\begin{solution}
Temos, pela defini\c{c}\~{a}o, que
\begin{align*}
\| A \|_p &= \max \left( \| A x \|_p / \| x \|_p \right).
\end{align*}
Logo,
\begin{align*}
\| A \|_p &\geq \| A x \|_p / \| x \|_p, \\
\| A x \|_p &\leq \| A \|_p \| x \|_p.
\end{align*}
\end{solution}
\part $\| A B \|_p \leq \| A \|_p \| B \|_p$;
\begin{solution}
Seja $x_0$ um vetor tal que $\| x_0 \| = 1$ e
\begin{align*}
\| A B x_0 \| &= \max_{\| x \| = 1} \| A B x \| = \| A B \|.
\end{align*}
Ent\~{a}o
\begin{align*}
\| A B \| &= \| A B x_0 \| \\
&\leq \| A \| \| B x_0 \| && \text{pelo item anterior} \\
&\leq \| A \| \| B \| \| x_0 \| && \text{pelo item anterior} \\
&= \| A \| \| B \| && \| x_0 \| = 1.
\end{align*}
\end{solution}
\part $\| I_n \| _p = 1$.
\begin{solution}
Temos, pela defini\c{c}\~{a}o, que
\begin{align*}
\| I \|_p &= \max \left( \| I x \|_p / \| x \|_p \right) \\
&= \max \left( \| x \|_p / \| x \|_p \right) && I x = x \\
&= \max 1 = 1.
\end{align*}
\end{solution}
\end{parts}
\question Para as express\~{o}es abaixo, demonstrar inicialmente que as normas s\~{a}o limitadas superiomente pelos valores respectivos. Em seguinda, encontra um vetor $x$ que satisfa\c{c}a a rela\c{c}\~{a}o na igualdade. Sugest\~{a}o: empregue vetores canônicos e /ou vetores com componentes convenientemente escolhidas, iguais a $\left( +1 \right)$ ou $\left( -1 \right)$, de modo a conseguir a igualdade.
\begin{parts}
\part[Equa\c{c}\~{a}o (5.2.14), p\'{a}gina 283, do Meyer\nocite{Meyer:2000:matrix}] $\| A \|_1 = \max_j \sum_i | a_{ij} |$,
\begin{solution}
Tomando $x$ tal que $\| x \|_1 = 1$, temos que
\begin{align*}
\| A x \|_1 &= \sum_i | A_{i \mdot} x | && \text{pela defini\c{c}\~{a}o} \\
&= \sum_i \left| \sum_j a_{ij} x_j \right| \\
&\leq \sum_i \sum_j \left| a_{ij} x_j \right| && \text{pela desigualdade de Cauchy-Schwarz} \\
&\leq \sum_i \sum_j | a_{ij} | | x_j | && \text{pela desigualdade triangular} \\
&= \sum_j \left( | x_j | \sum_i | a_{ij} | \right) \\
&\leq \left( \sum_j | x_j | \right) \left( \max_j \sum_i | a_{ij} | \right) \\
&= \max_j \sum_i | a_{ij} | && \| x \|_1 = 1.
\end{align*}
A igualdade pode ser obtida pois se $A_{\mdot k}$ \'{e} a coluna com a maior soma absoluta tomamos $x = e_k$ e consquentemente $\| A e_k \|_1 = \| A_{\mdot k} \|_1 = \max_j \sum_{j} | a_{ij} |$.
\end{solution}
\part[Equa\c{c}\~{a}o (5.2.15), p\'{a}gina 283, do Meyer\nocite{Meyer:2000:matrix}] $\| A \|_\infty = \max_i \sum_j | a_{ij} |$.
\begin{solution}
Tomando $x$ tal que $\| x \|_\infty = 1$, temos
\begin{align*}
\| A x \|_\infty &= \max_i \left| A_{i \mdot} x \right| && \text{pela defini\c{c}\~{a}o} \\
&= \max_i \left| \sum_j a_{ij} x_j \right| \\
&\leq \max_i \sum_j | a_{ij} x_j | && \text{pela desigualdade triangular} \\
&\leq \max_i \sum_j | a_{ij} | | x_j | && \text{pela desigualdade de Cauchy-Schwarz} \\
&\leq \max_i \sum_j | a_{ij} | && \| x \|_\infty = 1.
\end{align*}
A igualdade pode ser obtida pois se $A_{k \mdot}$ \'{e} a linha com maior soma absoluta e $x$ \'{e} o vetor tal que
\begin{align*}
x_j &= \begin{cases}
1, & \text{se $a_{kj} \geq 0$}, \\
-1, & \text{se $a_{kj} < 0$},
\end{cases}
\end{align*}
ent\~{a}o
\begin{align*}
| A_{i \mdot} x | &= \left| \sum_j a_{ij} x_j \right| \\
&\leq \sum_j | a_{ij} | \quad \forall i, \\
| A_{k \mdot} x | &= \sum_j | a_{kj} | \\
&= \max_i \sum_j | a_{ij} |.
\end{align*}
\end{solution}
\end{parts}
\question[Ver equa\c{c}\~{a}o (5.2.1), p\'{a}gina 279, do Meyer\nocite{Meyer:2000:matrix}] Considere a matriz $A : m \times n$, e a norma de Frobenius: $\| A \|_F^2 = \sum_{i = 1}^m \sum_{j = 1}^n | a_{ij} |^2$. Demonstre que:
\begin{parts}
\part As tr\^{e}s condi\c{c}\~{o}es de defini\c{c}\~{a}o de norma de matrizes se verificam.
\begin{solution}
\begin{enumerate}
\item $\| A \|_F \geq 0$ e $\| A \|_F = 0 \leftrightarrow A = 0$.
Pela defini\c{c}\~{a}o da norma de Frobenius, temos
\begin{align*}
\| A \|_F^2 = \sum_i \sum_j | a_{ij} |^2.
\end{align*}
Como $| a_{ij} | \geq 0$ temos que $\| A \|_F^2 \geq 0$ e portanto $\| A \|_F \geq 0$.
E como $| a_{ij} | = 0 \leftrightarrow a_{ij} = 0$ temos que $\| A \|_F^2 = 0 \leftrightarrow A = 0$ e portanto $\| A \|_F = 0 \leftrightarrow A = 0$.
\item $\| \alpha A \|_F = | \alpha | \| A \|_F$.
utilizando a defini\c{c}\~{a}o da norma de Frobenius, temos
\begin{align*}
\| \alpha A \|_F^2 &= \sum_i \sum_j | \alpha a_{ij} |^2 \\
&= \sum_i \sum_j | \alpha |^2 | a_{ij} |^2 \\
&= | \alpha |^2 \sum_i \sum_j | a_{ij} |^2 \\
&= | \alpha |^2 \| A \|_F^2
\end{align*}
e portanto $\| \alpha A \|_F = | \alpha | \| A \|_F$.
\item $\| A + B \|_F \leq \| A \|_F + \| B \|_F$.
Utilizando a defini\c{c}\~{a}o da norma de Frobenius, temos
\begin{align*}
\| A + B \|_F^2 &= \sum_i \sum_j | a_{ij} + b_{ij} |^2 \\
&= \sum_i \sum_j | a_{ij}^2 + 2 a_{ij} b_{ij} + b_{ij}^2 | \\
&\leq \sum_i \sum_j | a_{ij}^2 | + | 2 a_{ij} b_{ij} | + | b_{ij}^2 | && \text{pela desigualdade triangular} \\
&\leq \sum_i \sum_j | a_{ij}^2 | + | b_{ij}^2 | \\
&= \sum_i \sum_j | a_{ij} |^2 + | b_{ij} |^2 \\
&= \left( \sum_i \sum_j | a_{ij} |^2 \right) + \left( \sum_i \sum_j | b_{ij} |^2 \right) \\
&= \| A \|_F^2 + \| B \|_F^2.
\end{align*}
Portanto, $\| A + B \|_F^2 \leq \| A \|_F^2 + \| B \|_F^2$ e, consequentemente, $\| A + B \| \leq \| A \|_F + \| B \|_F$.
\end{enumerate}
\end{solution}
\part $\| A \|_F^2 = \text{tr} \left( A^* A \right)$.
\begin{solution}
Temos que
\begin{align*}
A^* A &= \begin{bmatrix}
\overline{A_{\mdot 1}}^t A_{\mdot 1} & \overline{A_{\mdot 2}}^t A_{\mdot 1} & \ldots &\overline{A_{\mdot n}}^t A_{\mdot 1} \\
\overline{A_{\mdot 1}}^t A_{\mdot 2} & \overline{A_{\mdot 2}}^t A_{\mdot 2} & \ldots & \overline{A_{\mdot n}}^t A_{\mdot 2} \\
\vdots & \vdots & \ddots & \vdots \\
\overline{A_{\mdot 1}}^t A_{\mdot n} & \overline{A_{\mdot 2}}^t A_{\mdot n} & \ldots & \overline{A_{\mdot n}}^t A_{\mdot n}
\end{bmatrix}.
\end{align*}
Ent\~{a}o
\begin{align*}
\text{tr}(A^*A) &= \sum_i \overline{A_{\mdot i}}^t A_{\mdot i} \\
&= \sum_i \sum_j \overline{a_{ij}} a_{ij} \\
&= \sum_i \sum_j | a_{ij} |^2 \\
&= \| A \|_F^2.
\end{align*}
\end{solution}
\part $\| A B \|_F \leq \| A \|_F \| B \|_F$.
\begin{solution}
Temos que
\begin{align*}
\| A B \|_F^2 &= \sum_j \| \left( A B \right)_{\mdot j} \|_2^2 \\
&= \sum_j \| A B_{\mdot j} \|_2^2 \\
&\leq \sum_j \| A \|_F^2 \| B_{\mdot j} \|_2^2 \\
&= \| A \|_F^2 \sum_j \| B_{\mdot j} \|_2^2 \\
&= \| A \|_F^2 \| B \|_F^2.
\end{align*}
Portanto $\| A B \|_F \leq \| A \|_F \| B \|_F$.
\end{solution}
\end{parts}
\question[Equa\c{c}\~{a}o (5.2.7), p\'{a}gina 281, do Meyer\nocite{Meyer:2000:matrix}] Demonstrar que $\| A \|_2 = \max_{\| x \|_2 = 1} \| A x \|_2 = \sqrt{\lambda_\text{max}}$, onde $\lambda_\text{max}$ \'{e} o maior autovalor de $A^T A$.
Sugest\~{a}o: considere o problema: $\max f(x) = \| A x \|_2^2 = \left( A x \right)^t \left( A x \right)$, $x^t x = 1$ e a fun\c{c}\~{a}o $L(x, \lambda) = f(x) - \lambda \left( x^t x - 1 \right)$. Analise pontos estacion\'{a}rios de $f(x)$ e \dots
\begin{solution}
Considerando o problema
\begin{align*}
\text{max } & f(x) = \| A x \|_2^2 = x^t A^t A x \\
\text{s.a } & g(x) = x^t x = 1
\end{align*}
utilizando o m\'{e}todo dos multiplicadores de Lagrange.
Introduzindo uma nova vari\'{a}vel $\lambda$ (o multiplicador de Lagrange), e considerando a fun\c{c}\~{a}o $h(x, \lambda) = f(x) = \lambda g(x)$ temos que o ponto no qual $f$ \'{e} m\'{a}ximo est\'{a} contido no conjunto de solu\c{c}\~{o}es da equa\c{c}\~{a}o $\partial h / \partial x_i = 0$ ($i = 1, 2, \ldots, n$) em que $g(x) = 1$. Derivando $h$ em rela\c{c}\~{a}o a $x_i$ obtemos
\begin{align*}
\left( A^t A - \lambda I \right) x = 0.
\end{align*}
Em outras palavras, $f$ \'{e} m\'{a}ximo no vetor $x$ para o qual $\left( A^t A - \lambda I \right) x = 0$ e $\| x \|_2 = 1$. Consequentemente, $\lambda$ must be a number such that $A^t A - \lambda I$ \'{e} singular (pois $x \neq 0$. Ent\~{a}o
\begin{align*}
x^t A^t A x = \lambda x^t x = \lambda,
\end{align*}
e segue que
\begin{align*}
\| A \|_2 = \max_{\| x \| = 1} \| A x \| = \max_{\| x \|^2 = 1} \| A x \| = \left( \max_{x^t x = 1} x^t A^t A x \right)^{1 / 2} = \sqrt{\lambda_{\max}},
\end{align*}
onde $\lambda_{\max}$ \'{e} o maior n\'{u}mero $\lambda$ para o qual $A^t A - \lambda I$ \'{e} singular.
\end{solution}
\question[Exerc\'{i}cio 5.2.6(a), p\'{a}gina 285, do Meyer\nocite{Meyer:2000:matrix}] Demonstre a seguinte propriedade v\'{a}lida para a norma-2 de matrizes: $\| A \|_2 = \max_x \max_y | y^t A x |$, para todo $x$ e $y$ tais que: $\| x \|_2 = \| y \|_2 = 1$.
\begin{solution}
Aplicando a desigualdade de Cauchy-Schwarz temos
\begin{align*}
| y^* A x | \leq \| y \|_2 \| A x \|_2 &\leftarrow \max_{\| x \|_2 = 1, \| y \|_2 = 1} | y^* A x | \leq \max_{\| x \|_2 = 1} \| A x \|_2 = \| A \|_2.
\end{align*}
Se $x_0$ \'{e} um vetor unit\'{a}rio tal que
\begin{align*}
\| A x_0 \|_2 = \max_{\| x \|_2 = 1} \| A x \|_2 = \| A \|_2
\end{align*}
e
\begin{align*}
y_0 = \left( A x_0 \right) / \| A x_0 \|_2 = \left( A x_0 \right) / \| A \|_2,
\end{align*}
ent\~{a}o
\begin{align*}
y_0^* A x_0 = \left( x_0^* A^* A x_0 \right) / \| A \|_2 = \left( \| A x_0 \|_2^2 \right) / \| A \|_2 = \| A \|_2^2 / \| A \|_2 = \| A \|_2.
\end{align*}
\end{solution}
\question Verifique se as afirma\c{c}\~{o}es abaixo s\~{a}o verdadeiras ou falsas. Demonstre as verdadeiras e d\^{e} um contra-exemplo para as falsas.
\begin{parts}
\part $\| A \|_p = \| A^t \|_p$, $p = 1, 2, \infty$.
\begin{solution}
Falsa, pois
\begin{enumerate}
\item $p = 1$: pela defini\c{c}\~{a}o $\| A \|_1 = \max_j \sum_i | a_{ij} |$.
\item $p = 2$: pela defini\c{c}\~{a}o $\| A \|_2 = \sqrt{\lambda_{\max}}$, $\lambda_{\max}$ \'{e} o maior autovalor da matriz $A^* A$ ($A^* A \neq A A^*$).
\item $p = \infty$: pela defini\c{c}\~{a}o $\| A \|_\infty = \max_i \sum_j | a_{ij} |$.
\end{enumerate}
\end{solution}
\part $\| A \|_1 = \| A^t \|_\infty$.
\begin{solution}
Verdadeiro. Pela defini\c{c}\~{a}o temos
\begin{align*}
\| A \|_1 &= \max_j \sum_i | a_{ij} |, \\
\| A \|_\infty &= \max_i \sum_j | a_{ij} |,
\end{align*}
e consequentemente
\begin{align*}
\| A^t \|_\infty &= \max_i \sum_j | a_{ji} | = \| A \|_1,
\| A^t \|_1 &= \max_j \sum_i | a_{ji} | = \| A \|_\infty.
\end{align*}
\end{solution}
\part $\| A \|_F = \| A^t \|_F$.
\begin{solution}
Verdadeiro. Pela defini\c{c}\~{a}o temos
\begin{align*}
\| A \|_F^2 &= \sum_i \sum_j | a_{ij} |^2.
\end{align*}
Logo,
\begin{align*}
\| A^t \|_F^2 &= \sum_i \sum_j | a_{ji} |^2 = \| A \|_F^2
\end{align*}
e consequentemente $\| A \|_F = \| A^t \|_F$.
\end{solution}
\end{parts}
\question Demonstre que $\| A \|_p \geq | \lambda |$ para $A : n \times n$ e $\lambda$ autovalor de $A$.
\begin{solution}
Seja $\lambda$ um autovalor de $A$ associado ao autovetor $x$. Ent\~{a}o
\begin{align*}
A x &= \lambda x \\
\| A x \| &\leq \| A \| \| x \| && \text{ver exerc\'{i}cio 8(a)} \\
|| \lambda x \| &= | \lambda | \| x \| \\
\| A \| \| x \| &\geq | \lambda | \| x \| \\
\| A \| &\geq | \lambda \| && \| x \| > 0.
\end{align*}
\end{solution}
\question Equival\^{e}ncia de Normas Matriciais: considere $A : m \times n$. Demonstre que:
\begin{parts}
\part $\left( 1 / \sqrt{n} \right) \| A \|_\infty \leq \| A \|_2 \leq \sqrt{m} \| A \|_\infty$;
\begin{solution}
Pela defini\c{c}\~{a}o de norma matricial induzida e as rela\c{c}\~{o}es entre normas vetoriais do exerc\'{i}cio 7, temos
\begin{align*}
\| A \|_2 &= \max_{x \neq 0} \| A x \|_2 / \| x \|_2 \\
&\leq \max_{x \neq 0} \left( \sqrt{m} \| A x \|_\infty \right) / \| x \|_2 && \| v \|_2 \leq \sqrt{n} \| v \|_\infty \\
&\leq \max_{x \neq 0} \left( \sqrt{m} \| A x \|_\infty \right) / \| x \|_\infty && 1 / \| x \|_2 \leq 1 / \| v \|_\infty \\
&= \sqrt{m} \| A \|_\infty, \\
\| A \|_2 &= \max_{x \neq 0} \| A x \|_2 / \| x \|_2 \\
&\geq \max_{x \neq 0} \| A x \|_\infty / \| x \|_2 && \| v \|_2 \geq \| v \|_\infty \\
&\geq \max_{x \neq 0} \| A x \|_\infty / \left( \sqrt{n} \| x \|_\infty \right) && 1 / \| x \|_2 \geq 1 / \left( \sqrt{n} \| x \|_\infty \right) \\
&= \left( 1 / \sqrt{n} \right) \| A \|_\infty.
\end{align*}
Logo, $\left( 1 / \sqrt{n} \right) \| A \|_\infty \leq \| A \|_2 \leq \sqrt{m} \| A \|_\infty$.
\end{solution}
\part $\left( 1 / m \right) \| A \|_1 \leq \| A \|_\infty \leq n \| A \|_1$;
\begin{solution}
Pela defini\c{c}\~{a}o de norma matricial induzida e as rela\c{c}\~{o}es entre normas vetoriais do exerc\'{i}cio 7, temos
\begin{align*}
\| A \|_\infty &= \max_{x \neq 0} \| A x \|_\infty / \| x \|_\infty \\
&\leq \max_{x \neq 0} \| A x \|_1 / \| x \|_\infty && \| v \|_\infty \leq \| v \|_1 \\
&\leq \max_{x \neq 0} \left( n \| A x \|_1 \right) / \| x \|_1 && 1 / \| x \|_\infty \leq n / \| v \|_1 \\
&= n \| A \|_1, \\
\| A \|_\infty &= \max_{x \neq 0} \| A x \|_\infty / \| x \|_\infty \\
&\geq \max_{x \neq 0} \left( \| A x \|_1 / m \right) / \| x \|_\infty && \| v \|_\infty \geq \| v \|_1 / n \\
&\geq \max_{x \neq 0} \left( \| A x \|_1 / m \right) / \| x \|_1 && 1 / \| x \|_\infty \geq 1 / \| x \|_1 \\
&= \left( 1 / m \right) \| A \|_1.
\end{align*}
Logo, $\left( 1 / m \right) \| A \|_1 \leq \| A \|_\infty \leq n \| A \|_1$.
\end{solution}
\part $\left( 1 / \sqrt{m} \right) \| A \|_1 \leq \| A \|_2 \leq \sqrt{n} \| A \|_1$;
\begin{solution}
Pela defini\c{c}\~{a}o de norma matricial induzida e as rela\c{c}\~{o}es entre normas vetoriais do exerc\'{i}cio 7, temos
\begin{align*}
\| A \|_2 &= \max_{x \neq 0} \| A x \|_2 / \| x \|_2 \\
&\leq \max_{x \neq 0} \| A x \|_1 / \| x \|_2 && \| v \|_2 \leq \| v \|_1 \\
&\leq \max_{x \neq 0} \left( \sqrt{n} \| A x \|_1 \right) / \| x \|_1 && 1 / \| x \|_2 \leq \sqrt{n} / \| v \|_1 \\
&= \sqrt{n} \| A \|_1, \\
\| A \|_2 &= \max_{x \neq 0} \| A x \|_2 / \| x \|_2 \\
&\geq \max_{x \neq 0} \left( \| A x \|_1 / \sqrt{m} \right) / \| x \|_2 && \| v \|_2 \geq \| v \|_1 / \sqrt{n} \\
&\geq \max_{x \neq 0} \left( \| A x \|_1 / \sqrt{m} \right) / \| x \|_1 && 1 / \| x \|_2 \geq 1 / \| x \|_1 \\
&= \left( 1 / \sqrt{m} \right) \| A \|_1.
\end{align*}
Logo, $\left( 1 / \sqrt{m} \right) \| A \|_1 \leq \| A \|_2 \leq \sqrt{n} \| A \|_1$.
\end{solution}
\part[Ver equa\c{c}\~{a}o (7.1.7), p\'{a}gina 494, do Meyer\nocite{Meyer:2000:matrix}] $\| A \|_2 \leq \| A \|_F \leq \sqrt{n} \| A \|_2$.
\begin{solution}
Pela defini\c{c}\~{a}o de norma-2, norma de Frobenius e
\begin{align*}
\text{tr}(A) = \sum_i \lambda_i,
\end{align*}
temos que
\begin{align*}
\| A \|_F^2 &= \text{tr}(A^t A) \\
&= \sum_i \lambda_i \\
&\geq \lambda_{\max} \\
&= \| A \|_2^2, \\
\| A \|_F^2 &= \text{tr}(A^t A) \\
&= \sum_i \lambda_i \\
&\leq n \lambda_{\max} \\
&= n \| A \|_2^2.
\end{align*}
Logo, $\| A \|_2 \leq \| A \|_F \leq \sqrt{n} \| A \|_2$.
\end{solution}
\end{parts}
\question Mostre que $B = \left( A + A^t \right) / 2$ \'{e} a matriz sim\'{e}trica mais pr\'{o}xima de $A \in \mathbb{R}^{n \times n}$ na norma de Fronenius.
\begin{solution}
Seja $B \in \mathbb{R}^{n \times n}$ tal que $B = B^t$ e $B$ \'{e} a matriz sim\'{e}trica mais pr\'{o}xima de $A \in \mathbb{R}^{n \times n}$ na norma de Frobenius, i.e.,
\begin{align*}
\min \| A - B \|_F.
\end{align*}
Ent\~{a}o
\begin{align*}
\min \| A - B \|_F &\equiv \min \| A - B \|_F^2 \\
&= \min \sum_i \sum_j | a_{ij} - b_{ij} |^2 \\
&= \min \sum_i \sum_j \left( a_{ij} - b_{ij} \right)^2.
\end{align*}
Derivando em rela\c{c}\~{a}o a $b_{ij}$, temos que
\begin{align*}
\frac{\partial \left( \sum_i \sum_j \left( a_{ij} - b_{ij} \right)^2 \right)}{\partial b_{ij}} &= 2 \left( a_{ij} - b_{ij} \right) \left( -1 \right).
\end{align*}
Para o m\'{i}nimo, igualamos a derivada a zero e como, por hip\'{o}tese, $B = B^t$ temos
\begin{align*}
\begin{cases}
a_{ij} - b_{ij} = 0 \\
a_{ji} - b_{ij} = 0
\end{cases} \rightarrow b_{ij} = \frac{a_{ij} + a_{ji}}{2}.
\end{align*}
\end{solution}
\question Se $u, v \in \mathbb{R}^n$ e $E = u v^t$ ent\~{a}o:
\begin{parts}
\part $\| E \|_F = \| E \|_2 = \| u \|_2 \| v \|_2$;
\begin{solution}
Pela defini\c{c}\~{a}o de norma de Forbenius, temos
\begin{align*}
\| E \|_F &= \sqrt{\text{tr}(E^t E)} \\
&= \sqrt{\text{tr}(v u^t u v^t)} && E = u v^t \\
&= \sqrt{\| u \|_2^2 \text{tr}(v v^t)} \\
&= \sqrt{\| u \|_2^2 \| v \|_2^2} && \text{tr}(v v^t) = \| v \|_2^2 \\
&= \| u \|_2 \| v \|_2.
\end{align*}
E pela defini\c{c}\~{a}o de norma-2, temos
\begin{align*}
\| E \|_2 &= \sqrt{\lambda_{\max}} \\
E^t E x &= \lambda x \\
v u^t u v^t x &= \lambda x \\
\| u \|_2^2 v^t v v^t x &= \lambda v^t x \\
\| u \|_2^2 \| v \|_2^2 &= \lambda && v^t x \in \mathbb{R} > 0 \\
\| E \|_2 &= \sqrt{\| u \|_2^2 \| v \|_2^2} \\
&= \| u \|_2 \| v \|_2.
\end{align*}
\end{solution}
\part $\| E \|_\infty \leq \| u \|_\infty \| v \|_1$.
\begin{solution}
Pela defini\c{c}\~{a}o de norma-$\infty$ temos que
\begin{align*}
\| E \|_\infty &= \| u v^t \|_\infty \\
&= \max_i \sum_j | u_i v_j | \\
&\leq \max_i \sum_j | u_i | | v_j | && \text{pela desigualdade de Cauchy-Schwarz} \\
&= \max_i | u_i | \sum_j | v_j | \\
&= \| u \|_\infty \| v \|_1 && \text{pela defini\c{c}\~{a}o de norma-1 e norma-$\infty$}.
\end{align*}
\end{solution}
\end{parts}
\question[Ver Lemma 2.3.3, p\'{a}gina 58, do Golub\nocite{Golub:1996:matrix}] Perturba\c{c}\~{o}es em Matrizes e Inversas: considere $F : n \times n$ e uma norma matricial que satisfaz a propriedade: $\| A B \| \leq \| A \| \| B \|$. Se $\| F \| < 1$ ent\~{a}o $\left( I - F \right)$ \'{e} n\~{a}o singular e $\left( I - F \right)^{-1} = \sum_{k = 0}^\infty F^k$. Demonstrar este resultado.
Roteiro sugerido para a demonstra\c{c}\~{a}o:
\begin{enumerate}
\item demonstra que $\left( I - F \right)$ \'{e} n\~{a}o singular;
\item monstrar que $\sum_{k = 0}^N F^k \left( I - F \right) = I - F^{N + 1}$;
\item verificar que se $\| F \| < 1$ ent\~{a}o $\lim_{k \rightarrow \infty} F^k = 0$ e concluir o teorema.
\end{enumerate}
\begin{solution}
Suponha que $I - F$ \'{e} singular. Ent\~{a}o
\begin{align*}
\left( I - F \right) x = 0
\end{align*}
para algum $x \neq 0$. Mas $\| x \|_p = \| F x \|_p$ implica que $\| F \|_p \geq 1$ que \'{e} uma contradi\c{c}\~{a}o. Logo, $I - F$ \'{e} n\~{a}o singular.
Para obter a express\~{a}o para a inversa, considere
\begin{align*}
\begin{split}
\left( \sum_{k = 0}^N F^k \right) \left( I - F \right) &= F^0 + F^1 + F^2 + \ldots + F^N \\
&\quad {}- \left( F^1 + F^2 + F^3 + \ldots + F^{N + 1} \right)
\end{split} \\
&= I - F^{N + 1}.
\end{align*}
Como $\| F \|_p < 1$ segue que $\lim_{k \to \infty} F^k = 0$ pois $\| F^k \|_p \leq \| F \|_p^k$. Logo,
\begin{align*}
\left( \lim_{N \to \infty} \sum_{k = 0}^\infty F^k \right) \left( I - F \right) &= I.
\end{align*}
E, portanto, $\left( I - F \right)^{-1} = \lim_{N \to \infty} \sum_{k = 0}^N F^k$.
\end{solution}
\question Sob as hip\'{o}teses do teorema anterior, demonstrar que $\| \left( I - F \right)^{-1} - I \| \leq \left( \| F \| \right) / \left( 1 - \| F \| \right)$.
\begin{solution}
Temos que
\begin{align*}
\| \left( I - F \right)^{-1} - I \| &= \| \sum_{k = 0}^\infty F^k - I \| && \left( I - F \right)^{-1} = \sum_{k = 0}^\infty F^k \\
&= \left\| \sum_{k = 1}^\infty F^{k} \right\| \\
&\leq \sum_{k = 1}^\infty \| F \|^k && \text{pela desigualdade de Cauchy-Schwarz} \\
&= \| F \| / \left( 1 - \| F \| \right) && \text{pois se $ 0 < a_i < 1$ ent\~{a}o $\sum_{i = 1}^\infty a_i = a_1 / \left( 1 - a_i \right)$} \\
\end{align*}
\end{solution}
\question[Ver Teorema 2.3.4, p\'{a}gina 58, do Golub\nocite{Golub:1996:matrix}] Generalizar estes resultados para $A : n \times n$ n\~{a}o singular e considerar a pertuba\c{c}\~{a}o em $A : A + E$. Qual a consid\c{c}\~{a}o para que $\left( A + E \right)$ seja invers\'{i}vel? Quais as rela\c{c}\~{o}es para $\| \left( A + E \right)^{-1} \|$ e $\| \left( A + E \right)^{-1} - A^{-1} \|$?
\begin{solution}
Para $A$ n\~{a}o singular temos que $A + E = A\left( I + F \right)$ onde $F = - A^{-1}E$. Como $\| F \| = r < 1$ segue do exerc\'{i}cio anterior que $I - F$ \'{e} n\~{a}o singular e $\| \left( I - F \right)^{-1} \| < 1 / \left( 1 - r \right)$. Ent\~{a}o $\left( A + E \right)^{-1} = \left( I - F \right)^{-1} A^{-1}$ e
\begin{align*}
\| \left( A + E \right) \| \leq \| A^{-1} \| / \left( 1 - r \right).
\end{align*}
Pela f\'{o}rmula de Sherman-Morrison-Woodbury,
\begin{align*}
B^{-1} &= A^{-1} - B^{-1} \left( B - A \right) A^{-1},
\end{align*}
temos que $\left( A + E \right)^{-1} - A^{-1} = - A^{-1} E \left( A + E \right)^{-1}$ e tomando as normas encontramos
\begin{align*}
\| \left( A + E \right)^{-1} - A^{-1} \| &\leq \| A^{-1} \| \| E \| \| \left( A + E \right)^{-1} \| \\
&\leq \left( \| A^{-1} \|^2 \| E \| \right) / \left( 1 - r \right).
\end{align*}
\end{solution}
\question Demonstre que: se $A : n \times n$ \'{e} n\~{a}o singular e $\| E \|_p / \| A \|_p < 1 / \text{cond}_p (A)$, ent\~{a}o $(A + E)$ \'{e} n\~{a}o singular. Qual a interpreta\c{c}\~{a}o deste resultado?
\begin{solution}
Temos que $\left( A + E \right)$ pode ser escrito como $A \left( I - F \right)$, $F = - A^{-1} E$. Ent\~{a}o
\begin{align*}
\| F \|_p &= \| - A^{-1} E \|_p \\
&= \| A^{-1} E \|_p \\
&\leq \| A^{-1} \|_p \| E \|_p && \text{pela desigualdade de Cauchy-Schwarz} \\
&\leq \| A^{-1} \|_p \| A \|_p / \text{cond}_p (A) && \text{por hip\'{o}tese: $\| E \|_p / \| A \|_p < 1 / \text{cond}_p (A)$} \\
&= \text{cond}_p (A) / \text{cond}_p (A) = 1 && \text{pela defini\c{c}\~{a}o de n\'{u}mero de condi\c{c}\~{a}o}.
\end{align*}
Pelo exerc\'{i}cio anterior temos que como $\| F \| \leq 1$ ent\~{a}o $\left( A + E \right)$ \'{e} n\~{a}o singular.
A interpreta\c{c}\~{a}o deste resultado \'{e} que para $\left( A + E \right)$ ser invers\'{i}vel $\| E \|_p < 1 / \| A^{-1} \|_p$.
\end{solution}
\question Seja $A : n \times n$ n\~{a}o singular e sejam $a_1, a_2, \ldots, a_n$ as colunas de $A$. Demonstre que para todo $i = 1, \ldots, n$ e todo $j = 1, \ldots, n$ vale a rela\c{c}\~{a}o: $\text{cond}_p (A) \geq \| a_i \|_p / \| a_j \|_p$. A partir deste resultado, podemos concluir que se a matriz $A$ \'{e} mal-escalda ent\~{a}o ser\'{a} mal-condicionada?
\begin{solution}
Pela defini\c{c}\~{a}o do n\'{u}mero de condi\c{c}\~{a}o, temos que
\begin{align*}
\text{cond}_p \left( A \right) &= \| A \|_p \| A^{-1} \|_p,
\end{align*}
pela defini\c{c}\~{a}o de norma matricial temos que
\begin{align*}
\| A \|_p &= \max_{\| x \| = 1} \| A x \|_p,
\end{align*}
pelo exerc\'{i}cio 8(a) temos que
\begin{align*}
\| A x \|_p \leq \| A \|_p \| x \|_p, \\
\| A e_i \|_p \leq \| A \|_p,
\end{align*}
e pelo exerc\'{i}cio 8(b) temos que
\begin{align*}
\| A B \|_p &\leq \| A \|_p \| B \|_p, \\
1 &= \| I \|_p = \| A A^{-1} \| \leq \| A \| \| A^{-1} \| \rightarrow \| A^{-1} \| \geq 1 / \| A \|.
\end{align*}
Ent\~{a}o
\begin{align*}
\text{cond}_p \left( A \right) &\geq \| a_i \|_p \| A^{-1} \|_p \\
&\geq \| a_i \|_p / \| A \|_p \\
&\geq \| a_i \|_p / \| a_j \|_p.
\end{align*}
A partir deste resultado podemos concluir que se a matriz $A$ \'{e} mal-escalada ent\~{a}o ela ser\'{a} mal-condicionada.
\end{solution}
\end{questions}