-
Notifications
You must be signed in to change notification settings - Fork 2
/
lista05.tex
304 lines (274 loc) · 15.3 KB
/
lista05.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
% Filename: lista05.tex
%
% This code is part of 'Solutions for MT402, Matrizes'
%
% Description: This file corresponds to the solutions of homework sheet 05.
%
% Created: 25.03.12 11:12:39 AM
% Last Change: 04.06.12 05:11:45 PM
%
% Authors:
% - Raniere Silva (2012): initial version
%
% Copyright (c) 2012 Raniere Silva <r.gaia.cs@gmail.com>
%
% This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
%
% This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%
\begin{questions}
\question Considere a matriz $A \in \mathbb{R}^{n \times n}$ e uma norma vetorial $p$. Demonstre que se $A$ tem posto completo, ent\~{a}o $\| v \|_A = \| A v \|_p$ \'{e} uma norma vetorial em $\mathbb{R}$.
\begin{solution}
Para que $\| v \|_A = \| A v \|_p$ seja uma norma vetorial em $\mathbb{R}$ ela deve satisfazer as seguintes propriedades:
\begin{enumerate}
\item $\| v \|_A \geq 0$ e $\| v \|_A = 0 \leftrightarrow v = 0$:
Como $\| v \|_A = \| A v \|_p$ temos que $\| v \|_A \geq 0$ pois $\| A v \|_p \geq 0$. Como $A$ tem posto completo ent\~{a}o $\text{N}(A) = 0$ e portanto $\| v \|_A = \| A v \|_p = \| 0 \|_p = 0 \leftrightarrow v = 0$.
\item $\| \alpha v \|_A = | \alpha | \| v \|$:
Temos que $\| \alpha v \|_A = \| A \left( \alpha v \right) \|_p = \| \alpha \left( A v \right) \|_p = | \alpha | \| A v \|_p$.
\item $\| v + w \|_A \leq \| v \|_A + \| w \|_A$:
Temos que $\| v + w \|_A = \| A \left( v + w \right) \|_p = \| A v + A w \|_p \leq \| A v \|_p + \| A w \|_p = \| v \|_A + \| w \|_A$.
\end{enumerate}
\end{solution}
\question Seja $A \in \mathbb{R}^{n \times n}$ sim\'{e}trica. Demonstre que $\| v \|_A = \sqrt{v^t A v}$ \'{e} uma norma em $\mathbb{R}^n$ se e somente se $A$ \'{e} definida positiva. ($A$ \'{e} definida positiva se $v^t A v > 0, \forall v \in \mathbb{R}^n, v \neq 0$.)
\begin{solution}
Para que $\| v \|_A = \sqrt{v^t A v}$ seja uma norma em $\mathbb{R}^n$ ela deve satisfazer as seguintes propriedades:
\begin{enumerate}
\item $\| v \|_A \geq 0$ e $\| v \|_A = 0 \leftrightarrow v = 0$:
Para que $\| v \|_A \geq 0$ temos que $v^t A v \geq 0$, i.e., que a matriz $A$ seja semi-definida positiva. E para que $\| v \|_A = 0 \leftrightarrow v = 0$ temos que $v^t A v = 0 \leftrightarrow v = 0$, i.e., que a matriz $A$ seja definida positiva.
\item $\| \alpha v \|_A = | \alpha | \| v \|$:
Temos que $\| \alpha v \|_A = \sqrt{ \left( \alpha v \right)^t A \left( \alpha v \right) } = \sqrt{\alpha^2 v^t A v} = \alpha \sqrt{v^t A v} = \alpha \| v \|_A$.
\item $\| v + w \|_A = \| v \|_A + \| w \|_A$:
Temos que
\begin{align*}
\| v + w \|_A &= \sqrt{ \left( v + w \right)^t A \left( v + w \right)} \\
&= \sqrt{ \left( v^t A + w^t A \right) \left( v + w \right)} \\
&= \sqrt{v^t A v + v^t A w + w^t A v + w^t A w} \\
&\leq \sqrt{v^t A v + w^t A w} \\
&\leq \sqrt{v^t A v} + \sqrt{w^t A w} \\
&= \| v \|_A + \| w \|_A.
\end{align*}
\end{enumerate}
\end{solution}
\question Considere as matrizes de permuta\c{c}\~{a}o $P_1$ e $P_2$, ambas $n \times n$. Demonstre que:
\begin{parts}
\part $\| P v \|_p = \| v \|_p$;
\begin{solution}
Uma maneira de interpretar uma matriz de permuta\c{c}\~{a}o em com uma fun\c{c}\~{a}o $f : \left\{ 1, 2, \ldots, n \right\} \to \left\{ 1, 2, \ldots, n \right\}$ que \'{e} bijetiva. Ent\~{a}o
\begin{align*}
\| P v \|_p &= \| v_{f(i)} \|_p \\
&= \left( \sum_i | v_{f(i)} |^p \right)^{1 / p} && \text{defini\c{c}\~{a}o de norma-$p$} \\
&= \left( \sum_i | v_i |^p \right)^{1 / p}.
\end{align*}
\end{solution}
\part Para normas matriciais induzidas das normas vetoriais e para norma de Frobenius: $\| P_1 A P_2 \| = \| A \|$.
\begin{solution}
Uma maneira de interpretar uma matriz de permuta\c{c}\~{a}o em com uma fun\c{c}\~{a}o $f : \left\{ 1, 2, \ldots, n \right\} \to \left\{ 1, 2, \ldots, n \right\}$ que \'{e} bijetiva. Ent\~{a}o
\begin{align*}
\| P_1 A P_2 \| &= \| A_{f_1(i) f_2(j)} \|.
\end{align*}
Logo, para a norma de Frobenius temos
\begin{align*}
\| P_1 A P_2 \|_F^2 &= \| A_{f_1(i) f_2(j)} \|_F^2 \\
&= \sum_i \sum_j | a_{f_1(i) f_2(j)} |^2 \\
&= \sum_i \sum_j | a_{ij} |^2 \\
&= \| A \|_F^2.
\end{align*}
E para as normas matriciais induzidas das normas vetoriais temos
\begin{align*}
\| P_1 A P_2 \|_p &= \max_{\| x_{f_2(j)} \|_p = 1} \| A_{f_1(i) f_2(j)} x_{f_2(j)} \|_p \\
&= \max_{\| x \|_p = 1} \| A_{f_1(i) j} x \| \\
&= \max_{\| x \|_p = 1} \| A x \|.
\end{align*}
\end{solution}
\end{parts}
\question[Corol\'{a}rio 2.3.2, p\'{a}gina 57, do Golub\nocite{Golub:1996:matrix}] Se $A : m \times n$, ent\~{a}o: $\| A \|_2 \leq \sqrt{\| A \|_1 \| A \|_\infty}$.
\begin{solution}
Primeiramente devemos lembrar que $\| A \|_2^2 = \lambda_{\max}$, $\lambda_{\max}$ \'{e} o maior autovalor de $A^t A$.
Seja $z \neq 0$ \'{e} tal que $A^t A z = \mu^2 z$ com $\mu = \| A \|_2$, ent\~{a}o
\begin{align*}
\mu^2 \| z \|_1 &= \| \mu^2 z \| && \mu \in \mathbb{R} \\
&= \| A^t A z \|_1 && \text{por hip\'{o}tese} \\
&\leq \| A^t \|_1 \| A \|_1 \| z \|_1 && \text{ver exerc\'{i}cio 8(a) e 8(b) da lista 4} \\
&= \| A \|_\infty \| A \|_1 \| z \|_1 && \text{ver exerc\'{i}cio 13 da lista 4}.
\end{align*}
\end{solution}
\question Considere a matriz $A: n \times n$ e a matriz unit\'{a}ria $Q : n \times n$. Demonstre que matrizes unit\'{a}rias preservam norma-2 de vetores e matrizes e preservam a norma de Frobenius de matrizes:
\begin{parts}
\part $\| Q \|_2 = 1$;
\begin{solution}
Temos que
\begin{align*}
\| Q \|_2^2 &= \left( \max_{\| x \| = 1} \| Q x \|_2 \right)^2\\
&= \max_{\| x \|_2 = 1} \| Q x \|_2^2 \\
&= \max_{\| x \|_2 = 1} x^* Q^* Q x \\
&= \max_{\| x \|_2 = 1} x^* x && Q^* Q = Q Q^* = I \\
&= \max_{\| x \|_2 = 1} \| x \|_2 \\
&= 1.
\end{align*}
\end{solution}
\part $\| Q v \|_2 = \| v \|_2$;
\begin{solution}
Temos que
\begin{align*}
\| Q v \|_2^2 &= v^* Q^* Q v \\
&= v^* v && Q^* Q = Q Q^* = I \\
&= \| v \|_2^2.
\end{align*}
\end{solution}
\part $\| Q A \|_2 = \| A Q \|_2 = \| A \|_2$;
\begin{solution}
Temos que
\begin{align*}
\| Q A \|_2^2 &= A^* Q^* Q A \\
&= A^* A && Q^* Q = Q Q^* = I \\
&= \| A \|_2^2
\end{align*}
e
\begin{align*}
\| A Q \|_2^2 &= Q^* A^* A Q \\
&= Q^* \| A \|_2^2 Q \\
&= \| A \|_2^2 && Q^* Q = Q Q^* = I.
\end{align*}
\end{solution}
\part $\| Q A \|_F = \| A Q \|_F = \| A \|_F$.
\begin{solution}
Temos que
\begin{align*}
\| Q A \|_F^2 &= \text{tr}\left( A^* Q^* Q A \right) \\
&= \text{tr}\left( A^* A \right) && Q^* Q = Q Q^* = I \\
&= \| A \|_F^2
\end{align*}
e
\begin{align*}
\| A Q \|_F^2 &= \text{tr}\left( Q^* A^* A Q \right) \\
&= \text{tr}\left( Q^* \| A \|_2^2 Q \right) \\
&= \text{tr}\left( A^* A \right) && Q^* Q = Q Q^* = I \\
&= \| A ||_F^2.
\end{align*}
\end{solution}
\end{parts}
\question Demonstre as propriedades para $\cond(A)$:
\begin{parts}
\part $\cond_p(A) \geq 1$;
\begin{solution}
Temos que
\begin{align*}
I &= A A^{-1}, \\
1 = \| I \| &= \| A A^{-1} \| \leq \| A \| \| A^{-1} \| && \text{exerc\'{i}cio 8(b) da lista 4}.
\end{align*}
Pela defini\c{c}\~{a}o, temos $\text{cond}_p \left( A \right) = \| A \| \| A^{-1} \|$ e portanto $\text{cond}_p \left( A \right) \geq 1$.
\end{solution}
\part $\cond(\alpha A) = \cond(A)$;
\begin{solution}
Temos que
\begin{align*}
\| \alpha A \| = | \alpha | \| A \|
\end{align*}
e, portanto,
\begin{align*}
I &= \left( \alpha / \alpha \right) A A^{-1} = \left( \alpha A \right) \left( \alpha^{-1} A^{-1} \right).
\end{align*}
Logo, $\text{cond}\left( \alpha A \right) = \text{cond}\left( A \right)$.
\end{solution}
\part $\cond(AB) \leq \cond(A)\cond(B)$.
\begin{solution}
Temos que
\begin{align*}
\text{cond}\left( A B \right) &= \| A B \| \| \left( A B \right)^{-1} \| \\
&= \| A B \| \| B^{-1} A^{-1} \| \\
&\leq \| A \| \| B \| \| B^{-1} \| \| A^{-1} \| && \text{exerc\'{i}cio 8(b) da lista 4} \\
&= \text{cond}\left( A \right) \text{cond}\left( B \right).
\end{align*}
\end{solution}
\end{parts}
\question Usando os resultados de equival\^{e}ncia entre normas matriciais demonstre:
\begin{parts}
\part $(1/n) \cond_2(A) \leq \cond_1(A) \leq n\cond_2(A)$;
\begin{solution}
Pela defini\c{c}\~{a}o, temos
\begin{align*}
\text{cond}_1(A) &= \| A \|_1 \| A^{-1} \|_1 \\
&\geq \left( \| A \|_2 / \sqrt{n} \right) \| A^{-1} \|_1 && \text{exerc\'{i}cio 15(c) da lista 4} \\
&\geq \left( \| A \|_2 / \sqrt{n} \right) \left( \| A^{-1} \|_2 / \sqrt{n} \right) && \text{exerc\'{i}cio 15(c) da lista 4} \\
&= \left( 1 / n \right) \text{cond}_2(A), \\
\text{cond}_1(A) &= \| A \|_1 \| A^{-1} \|_1 \\
&\leq \left( \sqrt{n} \| A \|_2 \right) \| A^{-1} \|_1 && \text{exerc\'{i}cio 15(c) da lista 4} \\
&\leq \left( \sqrt{n} \| A \|_2 \right) \left( \sqrt{n} \| A^{-1} \|_2 \right) && \text{exerc\'{i}cio 15(c) da lista 4} \\
&= n \text{cond}_2(A).
\end{align*}
Logo, $(1/n) \cond_2(A) \leq \cond_1(A) \leq n\cond_2(A)$.
\end{solution}
\part $(1/n)\cond_\infty(A) \leq \cond_2(A) \leq n\cond_\infty(A)$;
\begin{solution}
Pela defini\c{c}\~{a}o, temos
\begin{align*}
\text{cond}_2(A) &= \| A \|_2 \| A^{-1} \|_2 \\
&\geq \left( \| A \|_\infty / \sqrt{n} \right) \| A^{-1} \|_2 && \text{exerc\'{i}cio 15(a) da lista 4} \\
&\geq \left( \| A \|_\infty / \sqrt{n} \right) \left( \| A^{-1} \|_\infty / \sqrt{n} \right) && \text{exerc\'{i}cio 15(a) da lista 4} \\
&= \left( 1 / n \right) \text{cond}_\infty(A), \\
\text{cond}_2(A) &= \| A \|_2 \| A^{-1} \|_2 \\
&\leq \left( \sqrt{n} \| A \|_\infty \right) \| A^{-1} \|_2 && \text{exerc\'{i}cio 15(a) da lista 4} \\
&\leq \left( \sqrt{n} \| A \|_\infty \right) \left( \sqrt{n} \| A^{-1} \|_\infty \right) && \text{exerc\'{i}cio 15(a) da lista 4} \\
&= n \text{cond}_\infty(A).
\end{align*}
Logo, $(1/n)\cond_\infty(A) \leq \cond_2(A) \leq n\cond_\infty(A)$.
\end{solution}
\part $(1/n^2)\cond_1(A) \leq \cond_\infty(A) \leq n^2\cond_1(A)$.
\begin{solution}
Pela defini\c{c}\~{a}o, temos
\begin{align*}
\text{cond}_\infty(A) &= \| A \|_\infty \| A^{-1} \|_\infty \\
&\geq \left( \| A \|_1 / n \right) \| A^{-1} \|_\infty && \text{exerc\'{i}cio 15(b) da lista 4} \\
&\geq \left( \| A \|_1 / n \right) \left( \| A^{-1} \|_1 / n \right) && \text{exerc\'{i}cio 15(b) da lista 4} \\
&= \left( 1 / n^2 \right) \text{cond}_1(A), \\
\text{cond}_\infty(A) &= \| A \|_\infty \| A^{-1} \|_\infty \\
&\leq \left( n \| A \|_1 \right) \| A^{-1} \|_\infty && \text{exerc\'{i}cio 15(b) da lista 4} \\
&\leq \left( n \| A \|_1 \right) \left( n \| A^{-1} \|_1 \right) && \text{exerc\'{i}cio 15(b) da lista 4} \\
&= n^2 \text{cond}_1(A).
\end{align*}
Logo, $(1/n^2)\cond_1(A) \leq \cond_\infty(A) \leq n^2\cond_1(A)$.
\end{solution}
\end{parts}
\question Considere $A: n \times n$ e as matrizes $Q: n \times n$, ortogonal e $R: n \times n$ triangula superior tais que $A = QR$. Demonstre que $\left( 1 / \sqrt(n) \right) \| A \|_1 \leq \| R \|_1 \leq \sqrt{n} \| A \|_1$.
\begin{solution}
Temos que
\begin{align*}
\| A \| &= \| Q R \|_1 \\
&\leq \| Q \|_1 \| R \|_1 && \text{exerc\'{i}cio 8(b) da lista 4} \\
&\leq \sqrt{n} \| Q \|_2 \| R \|_1 && \text{exerc\'{i}cio 15(c) da lista 4} \\
&= \sqrt{n} \| R \|_1 && \text{exerc\'{i}cio 5(a)}, \\
\| R \|_1 &= \| Q^t Q R \|_1 \\
&= \| Q^t A \|_1 \\
&\leq \| Q^t \|_1 \| A \|_1 && \text{exerc\'{i}cio 8(b) da lista 4} \\
&= \| Q \|_\infty \| A \|_1 && \text{exerc\'{i}cio 13 da lista 4} \\
&\leq n \| Q \|_2 \| A \|_1 && \text{exerc\'{i}cio 15(a) da lista 4} \\
&= n \| A \|_1 && \text{exerc\'{i}cio 5(a)}.
\end{align*}
\end{solution}
\question Demonstre que se $B$ \'{e} uma submatriz qualquer de $A$ ent\~{a}o $\| B \|_p \leq \| A \|_p$.
\begin{solution}
Para qualquer matriz $B$ que \'{e} uma submatriz de $A$ podemos encontrar $M$ e $N$ \'{u}nicos tal que $B = M A N$. Logo, $\| B \|_p = \| M A N \|_p$. No exerc\'{i}cio 8(b) da lista 4 mostramos que $\| A B \|_p \leq \| A \|_p \| B \|_p$ e portanto
\begin{align*}
\| B \|_p &= \| M A N \|_p \\
&\leq \| M \|_p \| A \|_p \| N \|_p.
\end{align*}
Como $\| M \|_p = \| N \|_p = 1$ conclu\'{i}mos que $\| B \|_p \leq \| A \|_p$.
\end{solution}
\question Demonstre que a matriz $A = (v u^t) / (u^t u)$ \'{e} a matriz de norma-2 m\'{i}nima que satistaz $A u = v$.
\begin{solution}
Procuramos por $A$ tal que
\begin{align*}
\min_{A u = v} \| A \|_2 &= \min_{A u = v} \max_{\| x \| = 1} \| A x \|_2 \\
&= \min_{A u = v} \max_{\| x \| = 1} \| A x \|_2^2 \\
&= \min_{A u = v} \max_{\| x \| = 1} x^t A^t A x \\
&= \max_{\| x \| = 1} \min_{A u = v} x^t A^t A x.
\end{align*}
Derivando e igualando a zero, temos
\begin{align*}
\begin{cases}
A^t A x = 0 \\
A u = v
\end{cases}
\end{align*}
\end{solution}
\end{questions}