{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pandas Crosstab"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import pandas\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Import dataset\n",
    "data = pd.read_csv('../Data/loan_train.csv', index_col = 'Loan_ID')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th>Loan_Status</th>\n",
       "      <th>N</th>\n",
       "      <th>Y</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Credit_History</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0.0</th>\n",
       "      <td>0.921348</td>\n",
       "      <td>0.078652</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1.0</th>\n",
       "      <td>0.204211</td>\n",
       "      <td>0.795789</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>All</th>\n",
       "      <td>0.317376</td>\n",
       "      <td>0.682624</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "Loan_Status            N         Y\n",
       "Credit_History                    \n",
       "0.0             0.921348  0.078652\n",
       "1.0             0.204211  0.795789\n",
       "All             0.317376  0.682624"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pd.crosstab(data[\"Credit_History\"],data[\"Loan_Status\"],margins=True, normalize = 'index')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}