-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathC_mainDistanceVolumeMetrics.py
127 lines (117 loc) · 5.79 KB
/
C_mainDistanceVolumeMetrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 14 11:43:36 2017
@author: Raluca Sandu
"""
import os
import time
import pandas as pd
import scripts.plot_ablation_margin_hist as pm
from DistanceMetrics import DistanceMetrics, RadiomicsMetrics
from VolumeMetrics import VolumeMetrics
from surface_distance.metrics import compute_surface_distances
def main_distance_volume_metrics(patient_id, source_ct_ablation, source_ct_tumor,
ablation_segmentation_resampled, tumor_segmentation_resampled,
lesion_id, ablation_date, dir_plots,
FLAG_SAVE_TO_EXCEL=True, title='Ablation to Tumor Euclidean Distances',
calculate_volume_metrics=False, calculate_radiomics=False):
# %% Get Surface Distances between tumor and ablation segmentations
surface_distance_metrics = DistanceMetrics(ablation_segmentation_resampled, tumor_segmentation_resampled)
if surface_distance_metrics.num_tumor_surface_pixels > 0:
df_distances_1set = surface_distance_metrics.get_SitkDistances()
distanceMap = surface_distance_metrics.get_surface_distances()
num_surface_pixels = surface_distance_metrics.num_tumor_surface_pixels
else:
df_distances_1set = None
distanceMap = None
num_surface_pixels = None
# %% Get Radiomics Metrics (shape and intensity)
if calculate_radiomics:
# ABLATION
ablation_radiomics_metrics = RadiomicsMetrics(source_ct_ablation, ablation_segmentation_resampled)
if ablation_radiomics_metrics.error_flag is False:
df_ablation_metrics_1set = ablation_radiomics_metrics.get_axis_metrics_df()
new_columns_name = df_ablation_metrics_1set.columns + '_ablation'
df_ablation_metrics_1set.columns = new_columns_name
else:
df_ablation_metrics_1set = None
# TUMOR
tumor_radiomics_metrics = RadiomicsMetrics(source_ct_tumor, tumor_segmentation_resampled)
if tumor_radiomics_metrics.error_flag is False:
df_tumor_metrics_1set = tumor_radiomics_metrics.get_axis_metrics_df()
new_columns_name = df_tumor_metrics_1set.columns + '_tumor'
df_tumor_metrics_1set.columns = new_columns_name
else:
df_tumor_metrics_1set = None
else:
df_tumor_metrics_1set = None
df_ablation_metrics_1set = None
# %% call function to compute volume metrics
if calculate_volume_metrics:
evaloverlap = VolumeMetrics()
evaloverlap.set_image_object(ablation_segmentation_resampled, tumor_segmentation_resampled)
evaloverlap.set_volume_metrics()
if evaloverlap.error_flag is False:
df_volumes_1set = evaloverlap.get_volume_metrics_df()
else:
df_volumes_1set = None
else:
df_volumes_1set = None
# %% PLOT the color coded histogram of the distances
if (df_distances_1set is not None) and (distanceMap is not None) and (num_surface_pixels is not None):
try:
perc_smaller_equal_than_0, perc_0_5, perc_greater_than_5 = pm.plot_histogram_surface_distances(
pat_name=patient_id,
lesion_id=lesion_id,
rootdir=dir_plots,
distanceMap=distanceMap,
num_voxels=num_surface_pixels,
title=title,
ablation_date=ablation_date,
flag_to_plot=True)
except Exception:
print(patient_id, ' error plotting the distances and volumes')
perc_smaller_equal_than_0, perc_0_5, perc_greater_than_5 = None, None, None
else:
perc_smaller_equal_than_0, perc_0_5, perc_greater_than_5 = None, None, None
SurfaceDistances_raw_numbers = {
'patient_id': patient_id,
'lesion_id': lesion_id,
'ablation_date': ablation_date,
'number_nonzero_surface_pixels': num_surface_pixels,
'SurfaceDistances_Tumor2Ablation': distanceMap
}
SurfaceDistances_percentages = {
'safety_margin_distribution_0': perc_smaller_equal_than_0,
'safety_margin_distribution_5': perc_0_5,
'safety_margin_distribution_10': perc_greater_than_5
}
# %% Set UP the Final DataFrame by concatenating all the features extracted
SurfaceDistances_dict_list = []
SurfaceDistances_dict_list.append(SurfaceDistances_raw_numbers)
df_SurfaceDistances = pd.DataFrame(SurfaceDistances_dict_list)
patient_data = {'patient_id': patient_id,
'lesion_id': lesion_id,
'ablation_date': ablation_date}
patient_list = []
patient_list.append(patient_data)
patient_df = pd.DataFrame(patient_list)
SurfaceDistances_percentages_list = []
SurfaceDistances_percentages_list.append(SurfaceDistances_percentages)
df_SurfaceDistances_percentages = pd.DataFrame(SurfaceDistances_percentages_list)
df_metrics = pd.concat(
[patient_df, df_volumes_1set, df_distances_1set, df_ablation_metrics_1set, df_tumor_metrics_1set,
df_SurfaceDistances_percentages], axis=1)
# %% save to excel the average of the distance metrics '''
if FLAG_SAVE_TO_EXCEL:
timestr = time.strftime("%H%M%S-%Y%m%d")
lesion_id_str = str(lesion_id)
lesion_id = lesion_id_str.split('.')[0]
filename = str(patient_id) + '_' + str(lesion_id) + '_' + 'AblationDate_' + str(
ablation_date) + '_DistanceVolumeMetrics' + timestr + '.xlsx'
filepath_excel = os.path.join(dir_plots, filename)
writer = pd.ExcelWriter(filepath_excel)
df_metrics.to_excel(writer, sheet_name='AT_metrics', index=False, float_format='%.4f')
# df_SurfaceDistances.to_excel(writer, sheet_name="SurfaceDistances", index=False, float_format="%.4f")
writer.save()
print('writing to Excel....', dir_plots)