-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfletcher_reeves_method.py
89 lines (72 loc) · 2.55 KB
/
fletcher_reeves_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
from scipy.optimize import line_search, golden
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
"""Using golden section method for computing fletcher reeves"""
def golden_section(f, a, b, epsilon): #univar
alpha = 0.618 # golden ratio
varlambda = a + (1 - alpha) * (b - a) # base case
varmu = a + alpha * (b - a) # base case
while abs(b - a) > epsilon:
if f(varlambda) > f(varmu):
a = varlambda
varlambda = varmu
varmu = a + alpha * (b - a)
elif f(varlambda) <= f(varmu):
b = varmu
varmu = varlambda
varlambda = a + (1 - alpha) * (b - a)
return f((a + b) / 2), (a + b) / 2
def fletcher_reeves(Xj, f, epsilon): # initialization
x1, x2, NORM = [Xj[0]], [Xj[1]], np.linalg.norm # initial guesses
Df = gradient
grad_k = gradient(Xj)
d = - grad_k
v_lam = []
while True:
start_point = Xj # start point
v_lambda = golden(lambda lam: f(start_point + lam * d), brack=(a,b), tol=epsilon)
v_lam.append(v_lambda)
if v_lambda is not None:
X = Xj + v_lambda * d # update exp point
x1.append(X[0])
x2.append(X[1])
if NORM(Df(X)) < epsilon:
return x1, x2, v_lam
else:
Xj = X
temp = grad_k # grad at preceding point
grad_k = Df(Xj) # grad at current point
chi = NORM(grad_k)**2/ NORM(temp)**2
d = - grad_k + chi*d # new updated descent direction
x1.append(Xj[0])
x2.append(Xj[1])
def f(x):
return (x[0] - 2*x[1])**2 + (x[0] - 2)**4
def gradient(x):
df_dx1 = 2*x[0] - 4*x[1] + 4*(x[0]-2)**3
df_dx2 = 8*x[1] - 4*x[0]
return np.array([df_dx1, df_dx2])
#def fletcher_reeves(Xj, epsilon, alpha_1, alpha_2):
a, b, epsilon = -1, 11, 0.02
init_guess = Xj = np.array([0.0, 3.0])
x1, x2, v_lam = fletcher_reeves(init_guess, f, epsilon) # problem 2d
#Initial interval and accuracy
print("X1: ", x1)
print("X2: ", x2)
print("Lambda: ", v_lam)
# Plots
contour_x = np.linspace(0, 3, 100)
contour_y = np.linspace(0, 3, 100)
X, Y = np.meshgrid(contour_x, contour_y)
Z = f([X, Y])
plt.figure(figsize=(10, 8))
contour = plt.contour(X, Y, Z, levels=10, cmap='viridis')
plt.scatter(x1[::3], x2[::3], c='blue', marker='x', label='Optimization Path')
plt.plot(x1[::3], x2[::3], linestyle='-', color='k', alpha=1)
plt.title('Optimization Contour Plot')
plt.xlabel('x1')
plt.ylabel('x2')
plt.colorbar(contour, label='Function Value')
plt.legend()
plt.show()